as

aicas GmbH

JamaicaAMS User Documentation

Version 1.2.1
24 March 2025

JamaicaAMS User Documentation

© 2018-2025 aicas GmbH, Karlsruhe. All rights reserved.

Every effort has been made to ensure that all statements and information contained in this document are accurate. How-

ever, aicas GmbH accepts no liability for any error or omission therein.

This product includes software developed by IAIK of Graz University of Technology. This software is based in part on
the work of the Independent JPEG Group.

Portions of this software are copyright © 2020 The FreeType Project (www.freetype.org). All rights reserved.
Java and all Java-based trademarks are registered trademarks of Oracle America, Inc. All other brands or product names
are trademarks or registered trademarks of their respective holders.

The software included in this product contains copyrighted software that is licensed under the GNU General Public
License (GPL) or GNU Lesser General Public License (LGPL). You may obtain the complete corresponding source code
from us for a period of three years after our last shipment of this product. We will charge 30 EUR for the creation and
shipment of a physical machine-readable copy of the source code.

Please contact us at the following address for payment instructions:

aicas GmbH
Emmy-Noether-Strafle 9
76131 Karlsruhe
Germany

Email: support@aicas.com

This offer is valid to anyone in receipt of this information.

Page ii Version 1.2.1 24 March 2025

Contents

(1 JamaicaAMS Framework]

2 Getting Started|

2.1 =~ System Requirements|

[2.3.3.1

Enhanced Interaction with the Advanced GoGo Shell (JLine)| . . .

2.3.5 Example Bundles|.

N352

N353

3 Tools and Components|

[3.1 Development]

(3.1.1 PMD and SpotBugs|

3.2 Deployment] e

[3.2.1 jarsigner|.

(3.3 Configuration|

[3.3.2 Bundle Configuration|.

3321

Configurator|

3322

Configuration Admin Service|

11
11
12
15
15
16
18

20
21
21
21
22
23

JamaicaAMS User Documentation

37
4.1 Foundations of Java Security| o 37
4.1.1 Bytecode Verification|. oo 37
“1.1.1 Tamitations|. L 38

412 Classloaders o 38
[4.1.3 Java Security Manager] Lo 39

1.3.1 Permissions| 39

B.132 Policy] 40

4.1.3.3 AccessControlling| 40

@.1.4 Java Cryptography Architecture JCA). 42
@4.1.4.1 Public/Private Key Paiyy 0000 43

U142 Certificatesand Chamnsl 43

4.1.5 Additional Java Security Frameworks| 00 L. 44
i4.1.5.1 Java Authentication and Authorization Service (JAAS)| 44

4.1.5.2 Java Secure Socket Extension (JSSE)| 45

#4.1.5.3 Java Cryptography Extension JCE)[. 45

4.2 OSGi Security Mechanisms|. Lo L Lo 46
4.2.1 OSGiClassLoading| 47
4.2.2 OSGi1 Security Manager], 47
4.2.2.1 OSGi1 Security Challenges|. 47

B222 OSGiPermissions 48

2.2 Bundle Pr tjon Domain| 49

4224 Conditional Permission Adminl 50

4.2.2.5 Differences from Java’s Security Model| 50

4.2.3 Code Signingin OSG1l 51
424 SignedJARFile| 0. 51
4.2.5 Authentication and Permissionsl o000 53

4.3 Configuring Security for JamaicaAMS: A Step-by-Step Guide] 53
[4.3.1 TImtial Setting Up| 53
4.3.2 Generating Self-Signed Certificates| 54
4.3.2.1 Generating a Keystore witha Key Pair{ 54

4.3.2.2 Generating a Self-Signed Certificate| 55

4.3.2.3 Importing the Self-Signed Certificate into a Truststore| 56

4.3.3 SigningaBundle| o 56

Page 2

Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.3.4 Configure JamaicaAMS to Trust the Signed Bundle|. 57
4.3.5 Configure JamaicaAMS to Grant OSG1 Global Permissions| 57
4.3.6 Configure JamaicaAMS to Grant OSG1 Local Permissions| 58
“4.3.6.1 Grant Local Permissions to a File Write Bundlel 58

4.3.6.2 Grant Local Permissions to a Host Resolving Bundle| 59

4.4 JamaicaAMS Security Protection| oo oL 60
4.4.1 Common Understanding of Computer Security| 60
“.4.2 Common Vulnerabilities and Attacks| 60
442.1 Backdoon. 61

4.4.2.2 Denial of Service (DoS)| Lo 61

4423 Direct Accessl 62

4.42.4 FEavesdropping| 62

4425 Spoofingl 62

4426 Tampering 62

4.4.2°7 Privilege Escalation| 00 0L, 62

MA428 Phishing| 62

443 Attacklevels oo 63
4.43.1 Hardware Attacksl L. 63
M432 Firmware Attackslo L 64

4.4.3.3 Application Level Attacks|. 64

4.4.4 Deriving Attack Scenarios| Lo oL 0oL 64
4441 Backdoorsl 64

4.4.4.2 Forced System Breakdown by Signal Input (DoS)| 65

4443 System Access|. 65
44431 Accessby Code/API|. 65

44432 Access by Termmal/HMI| 65

44433 Accessby Networkl 65

4.4.4.3.4 Access by Configuration| 65

4.4.4.4 Listening to DATAINMOTION| 66
4444.1 Data Send to or from the Internet 66

4.4.4.4.2 Data Send over Other Connectors|. 66

44443 DataontheDisplay| 66

44444 Datainthe System| 66

4.4.4.5 Spoofing and Phishing|. 66

24 March 2025 Version 1.2.1 Page 3

JamaicaAMS User Documentation

4.4.4.6 Tampering with the System Configuration| 66

G447 Tampering With DATAATREST] o oo oo 67

4.44.8 Privilege Escalation|o 000 0oL 67

445 Countermeasures| 67
4.4.5.1 Managed Programming Language| 67

#4.4.5.2 Managed Runtime Environment|{. 67

“4.4.5.3 Commonly Used Programming Language] 67

4.4.5.4 Java Language Features| 68

4.45.5 ServiceHistory| L 68

#45.6 APISecurity|. 68

4.4.5"7 Intermediate Summary|, 68

#.4.5.8 Application Robustness| o000 68

#4.4.5.9 Validity of Application Code| 69

M4510 Environmentl 69

4.45.10.1 Hardware Measures| 69

4.5.10.2 Measures| o 69

“4.5.11 Imtializationl L oL o 70

44511.1 SecureBootl 70

4.4.5.11.2 Consequence| 70

4.4.6 DATA AT REST protection| 71
4.4°7 DATA AT MOTION protection| 71
M48 Conclusionl 71

5 OSGi1 Framework and Bundles| 73
[5.1 Framework Layers| 73
[5.2 Bundle Lifecycle] 74
0.3 Service Orientationl o . L 74
[5.4 Controlling the Bundles|., 75
[5.5 Enhanced Life Cycle Layer with Forced Thread Termmation| 75
(6 How to write a Bundle with Eclipse| 77
[6.1 Prerequisites|. 77
B2 USIEPDE . . o o o oo 77
[6.2.1 Create a new Plug-In Project| 77
6.2.2 Make Yourself Famibiarwiththe UIl00 00000 78

Page 4 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

[6.2.3 Implement the Functionality| 78

[6.2.4 Run the Bundle on the Integrated Framework{ 78

[6.2.5 Deployment|. 79

63 Using M2E| 80
[6.3.1 Create anew Maven Project| 80

[6.3.2 Importing the Examples into Eclipse|. 80

[6.3.3 How to build the Examples|. 81

[6.3.4 Implement the Functionality| 81

[6.3.5 Run the Bundle on the Integrated Framework| 81

[6.3.6 Deployment|. 81

|7 Debugging Bundles with Eclipse] 83
[7.1 Prerequisites|. 83
7.2 Background 83
[7.3 Setup of the Debugging Environment|. 84
[7.3.1 Start the Debug Server| oo 84

[7.3.2 Start the Debug Clientl 85

8 JamaicaAMS Runtime Reference] 87
(8.1 JamaicaAMS Properties|. 87
[8.1.1 ~ Config Properties| 87

[8.1.2 System Properties| 90

[8.1.3 Logger Properties|., 90

8 Budgets| 91

Thr Nl . .. e 93

8.3.1 Bundle Threads 94

[8.4 Usage of the Java Native Interface JNI)[. 97

[9 Information for Specific Targets| 99
.. 99
OI1 SharedLibraries] i 99

0.1.2 Random Number Generaton] 100

24 March 2025 Version 1.2.1 Page 5

JamaicaAMS User Documentation

Page 6 Version 1.2.1 24 March 2025

Chapter 1

JamaicaAMS Framework

JamaicaAMS (Application Management System, AMS) is a modular and extensible application
framework, especially designed and tailored for Industrial 10T use cases. It provides a powerful
runtime environment for Java-based applications and components, thereby supporting not only static
but also highly dynamic and distributed application scenarios.

JamaicaAMS targets in particular at heterogeneous embedded and mobile devices with sparse re-
sources, providing performance guarantees for their applications during runtime. However, high-end
servers and computational ecosystems are feasible target platforms as well, which also can take ad-
vantage of the integrated framework features and technology in a larger scaled fashion.

The strength of JamaicaAMS results from the combination of two solid open standards: OSGiTNﬂ,
that specifies a software architecture to create modular applications and services, called bundles, and
the Real-Time Specification for Java (RTSJ) [8]].

JamaicaAMS extends Apache Felix (currently version 7.0.5), which is an open source implementa-
tion of the OSGi specification, in its Core Release 8. The Apache framework implements standard-
ized mechanisms for lifecycle and dependency management of components, service abstractions as
well as standardized security and isolation mechanisms.

By implementing the OSGi open technology, JamaicaAMS allows for a seamless and automated
integration, configuration and update of application components on a big amount of remote devices,
at once and during runtime. By eliminating system downtime for maintenance and updates, it vastly
improves the availability of services and avoids disruption, for instance in production, automation
and consumer processes.

Moreover, JamaicaAMS relies on the robustness of JamaicaVM, aicas’ hard realtime Java-based Vir-
tual Machine. Based on the RTSJ specification, JamaicaVM implements mechanisms for realtime
programming and execution. Therefore JamaicaAMS permits to explicitly configure and enforce re-
source budgets for applications and their components during runtime. Thus, even if the system might
be overloaded and misbehaving, the framework and the resource-isolated applications are ensured
to operate in a reliable fashion. This is especially useful for mixed critical- and control automation
systems where, for example, the sampling of sensors and the control of actuators must be guaranteed
in either case.

'0SGi™;is a trademark, registered trademark or service mark of the OSGi Alliance.

JamaicaAMS User Documentation

Changes implemented in the Scheduler of JamaicaVM require setting certain capabilities, to allow
JamaicaVM to access realtime priorities and provide realtime thread guarantees.

On Linux, for example, one must either run (effectively) as root or set the CAP_SYS_NICE capabil-
ity on the executable, e.g., “setcap cap_sys_nice=eip” executable.

Please note that using “setcap” also requires root privileges. However, on a dedicated RTOS
(Real-Time Operating Systems), such as QNX, this is generally not needed.

JamaicaAMS can be complemented, when used together with a set of specialized tools and features
(see Figure [I.T) which support development, analysis, build, deployment, configuration and main-
tenance of Java-based applications and components. Integration with well established development
environments, like the Eclipse IDE, speeds up the implementation process, shortening the time-to-
market of future [oT applications.

Cloud connectivity features can easily be integrated into JamaicaAMS to allow for a central platform
and device management by remote operators.

Industrial IoT use cases are especially supported by automation bus interfaces, like Modbus. Finally,
a custom component repository can be easily deployed and integrated, providing a common code-
base for a multitude of devices in an app-store fashion. Comprising those features and functionalities
based on open standards, JamaicaAMS provides a powerful and portable platform for a variety of
innovative, performance critical, highly distributed and dynamic industrial and [oT scenarios.

This document provides information about particular technologies and components included in the
JamaicaAMS. It assumes from its readers a certain knowledge about the OSGi standard. However,
for those who are not familiar with the specification, Section [5|offers a brief introduction to the OSGi
layers and the core concept of bundle lifecycle, which are central to the development and management
of modular applications.

For additional information or conceptual clarification, please see the OSGi Core Release 8 Specifi-
cation [6]].

Page 8 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

Development Repositor Embedded
Workstation P y Device
Software Bundle JamaicaAMS
Development Repository Runtime Cross Cloud

Cloud

Tools
nEN wm
Jamaica- Deploy- ' '
s ment Realtime

Tools Realtime
\ ~ D D AMS Interface Processes
Software
IDE Component
/ \ Management Automation
1 Ressource Automation Sensors &
Agglggis Specific| | Security Budget Bus Actuators
Tools | |Libraries| | Tools Enforcer_nent Interfaces
Security
Software Ressource Security Device Config- Remote
Assessmt. Managemt. Managemt. Setup uration Monitor &
Tools Tools Tools Tools Tools Control

Figure 1.1: JamaicaAMS Framework and its components

Typographic Conventions

Throughout this manual the following typographic conventions were applied.
For items related to the file system, like paths and files:
path

filename

For references in code, like classes and methods:
class

method

Commands are given like:

“command”

Names of components, modules or bundles appear like:
“component”

“module”

“bundle”

Properties, Parameters, Environment Variables, and other items that require definition are written

like:

24 March 2025 Version 1.2.1

Page 9

JamaicaAMS User Documentation

property
VARIABLE

Output in terminal sessions is reproduced in monospaced. User inputs are designated by a prompt:
> input
Please note that the placeholder “< > is to be replaced by information pertinent to the particular

deployment in question, e.g., <path to JamaicaAMS> should be replaced with the current path
to the JamaicaAMS directory in the user’s specific filesystem.

Page 10 Version 1.2.1 24 March 2025

Chapter 2

Getting Started

2.1 System Requirements

Figure shows the combination of operating systems and processor architectures currently sup-
ported by JamaicaAMS.

Operating Systems ‘ Processor Architectures

Ubuntu 20.04 LTS | x86_64
Linux RISC-V
Pi OS ARMvV7-A
Pi OS ARMVE-A
OQNX 7.1 x86_64
QNX 7.1 ARMvVS-A
QNX 8.0 x86_64
QNX 8.0 ARMvVSE-A
VxWorks 24.03 x86_64

Figure 2.1: JamaicaAMS supported platforms.

JamaicaAMS runs on top of JamaicaVM, therefore it supports all platforms that JamaicaVM sup-
ports. If you are interested in a specific OS/processor architecture combination not mentioned here,
please contact aicas.

Without loss of generality, the following example describes one of the typical configurations for
running JamaicaAMS on an embedded target device (e.g., Raspberry Pi 4 Model B in this example).

This chapter offers information for a straight start, on how to install and execute JamaicaAMS on the
target platform.

* Operating System: Pi OS (Kernel version: 5.15)

e Processor Architectures: ARMvVS8-A (ARM-Cortex-A72, 1.5 GHz CPU clock, 4GB
SDRAM)

11

JamaicaAMS User Documentation

Note that...

Running on a target with much less computing power is possible or even more common in a typical JamaicaAMS
use case. For more detailed information about the supported targets, please contact support@aicas.com.

2.2 Installation

JamaicaAMS is distributed in the form of a ZIP file. In order to install JamaicaAMS simply unzip
the file and copy the created directory structure to the target platform. In case of the example target:

> unzip JamaicaAMS-<version>-linux-aarch64-raspberrypi-full.zip
the file structure of the JamaicaAMS distribution is depicted below.

Jjamaica-ams
| -—— bundles.optional
| | -— jline-<version>. jar
| “—— org.apache.felix.gogo.jline-<version>. jar
| -—— doc
| | —— build.info
| -—— documentation.pdf
| —— KNOWN_ISSUES
"—— Release_Notes
—-— example
| -—— infinite-loop-example—-<version>. jar
| -—— infinite-loop-example—-<version>-sources.zip
| -—— io-blocked-thread-example-<version>. jar
| -—— io-blocked-thread-example-<version>-sources.zip
| -—— memory-consumption-budget-example-<version>. jar
| —— memory-consumption-budget—-example-<version>—-sources.zip
| —— memory-consumption-example—-<version>.jar

| —— primes-budget-example—-<version>. jar

| -—— primes-budget-example-<version>-sources.zip

| -—— primes—-example-<version>. jar

| -—— primes-example-<version>-sources.zip

| —— primes—-lower-priority-example-<version>.jar

| —— primes—-lower-priority-example—-<version>-sources.zip
| -— thread-spawning-budget-example—-<version>. jar

| -— thread-spawning-budget-example-<version>-sources.zip
| —— thread-spawning-example—-<version>. jar

—— thread-spawning-example-<version>-sources.zip

—— license

|
|
|
|
|
|
|
|
|
|
|
| | -—— memory-consumption—-example—-<version>-sources.zip
|
|
|
|
|
|
|
|
|
|
|
| | -—— AICAS_EVALUATION_LICENSE

Page 12 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

| -—— Apachelicense?2
| "—— NOTICE

T—— setup

|-— bin

| | -—— jams

| | -—— jamsi

I | == Jamsp

| T—— Jjamst

| -—— bundle.l

| | -—— org.apache.felix.log-<version>. jar

| | -— osgi-log-writer—-<version>. jar
| “—— security-<version>. jar
| —— bundle.?2

| | -—— configuration-admin-<version>. jar

| -— jakarta.json—-api-<version>. jar

| -— org.apache.felix.cm. json-<version>. jar

| -—— org.apache.felix.configurator—-<version>. jar
| -—— org.apache.felix.scr—<version>. jar

| -— org.osgi.service.component—-<version>. jar

| -— org.osgi.util.converter-<version>. jar

| -— org.osgi.util.function-<version>. jar

| -— org.osgi.util.promise—-<version>. jar

|

I

|

I

I

I

I

I

| | -—— parsson-—-<version>. jar

| —-— policy-file-reader—-<version>. jar
| -— bundle.3
I

I

I

I

I

|

I

|

I

| -— org.apache.felix.gogo.command-<version>. jar
| -—— org.apache.felix.gogo.runtime-<version>. jar
“—— org.apache.felix.gogo.shell-<version>. jar

—— conft
|-— all.policy
| -— config.properties
| -— logging.properties
| —— osgi.all.policy
system.properties

| -—— aarcho64
| “—— lib<identity>.so
—-— fonts

T—— Vera<identity>.ttf

13 directories, 64 files

The JamaicaAMS directory structure is explained below. Please note that the placeholder between
“< > needs to be replaced by information pertinent to the particular deployment in question, e.g.,

in Figure[2.2] the current path to the JamaicaAMS directory.

24 March 2025 Version 1.2.1

Page 13

JamaicaAMS User Documentation

Directory ‘ Contents

<path to JamaicaAMS>/doc documentation

<path to JamaicaAMS>/example examples

<path to JamaicaAMS>/bundles.optional | optional bundles not in default setup
<path to JamaicaAMS>/setup/bundle.i|| [auto-deploy OSGi bundles

<path to JamaicaAMS>/setup/conf configuration files

<path to JamaicaAMS>/setup/bin executable binaries

<path to JamaicaAMS>/setup/lib Bitstream Vera fonts and dynamically

linked shared libraries

Figure 2.2: JamaicaAMS directory structure.

'Here, the OSGi bundles from bundle . are assigned start level 5.

Page 14

Version 1.2.1

24 March 2025

JamaicaAMS User Documentation

2.3 Execution

The JamaicaAMS distribution contains four executable binaries in the bin directory: jamsi (inter-
preted), jams (default), jamst (tool interface) and jamsp (profiling).

The jamsi executable should be used when debugging problems or issues, because it provides more
detailed output in error cases; the jams executable contains ahead-of-time compiled classes which
may lead to better performance. The jamst executable provides remote debugging functionality
and the jamsp executable should be used to collect information on the amount of runtime spent for
the execution of individual methods.

2.3.1 Launching

The binaries can be launched as follows, where jams is used for concreteness and jamsi can be
launched the same way:

cd <path-to-root-directory-of-JamaicaAMS>/setup
./bin/jams [-c <config-properties-file>] \

[-s <system-properties—-file>] \

[-b <bundle-cache-dir>]

Here, the parameters have the following meaning:

-c¢ <config-properties-file>

points to a framework configuration file. That file contains a description of the most important
framework configuration properties and can be adapted if needed. If not given, it defaults to
./conf/config.properties.

-s <system-properties-file>

points to a system configuration file. This makes it possible to set system properties when running
JamaicaAMS. The JamaicaAMS distribution contains a sample system configuration file that shows
how to enable security. If not given, it defaults to . /conf/system.properties.

-b <bundle-cache-dir>

specifies the cache directory for the OSGi bundles. If not given, it defaults to
./ Jjamaica—-ams—-cache.

24 March 2025 Version 1.2.1 Page 15

JamaicaAMS User Documentation

Additional parameters

Apart from those, the following parameters are also available:
-version/--version prints the version of JamaicaAMS and exits.

-help/--help prints usage information of JamaicaAMS and exits.

2.3.2 Environment Variables

The following environment variables are recognized by JamaicaAMS:

* JAMAICA_AMS_HEAP_SIZE specifies the Java heap size to be used by JamaicaAMS. The
Java heap is allocated at startup and stays at the fixed size specified by this environment vari-
able. Default: 64M

* JAMAICA_AMS_JAVA_STACK_SIZE specifies the Java stack size to be used by Java
threads. Values that are too small can cause a Java StackOverflowError to be thrown.
Default: 18K

* JAMAICA_AMS_NATIVE_STACK_SIZE specifies the C stack size to be used by Java
threads. Values that are too small can cause a Java StackOverflowError to be thrown
or the system to crash. Default: 256K

* JAMAICA_AMS_NUM_THREADS specifies the number of Java threads that JamaicaAMS
should create on startup. No further Java threads will be created once this number of active
threads has been reached. Default: 80

Please note that JamaicaAMS inherits from JamaicaVM the limitation of 511 as maximum
number of Java threads.

* JAMAICA_AMS_JARACCELERATOR_LOAD enables or disables loading the compiled
code of an accelerated bundle. It can be set to “true” or “false”. More information about
acceleration can be found in Section Default: “t rue”.

* JAMAICA_AMS_JARACCELERATOR_VERBOSE enables or disables displaying the
steps performed for loading the compiled code of an accelerated bundle. It can be set to
“true”or “false”. Default: “false”.

* JAMAICA_AMS_JARACCELERATOR_EXTRACTION_DIR specifies where the shared
library containing compiled code should be extracted from a bundle. The value may be an
absolute or relative path, ending in the system-specific separator (‘/° on Unix-Systems, \’ on
Windows). The empty path and the symbolic values “JAR” and “TMP” (case insensitive) are
also accepted. A relative or empty path tells the system to extract the shared library in the
same runtime location as the JAR containing the accelerated code, i.e., the bundle.. The value
“JAR” is equivalent to the empty path. The value “TMP” denotes a system-dependent default
temporary file directory. If the specified extraction directory is not writable, the default tem-
porary file directory is used instead. If the default temporary file directory is the extraction

Page 16 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

directory and it does not exist or it is not writable, then the library can not be extracted and the
accelerated code is not loaded. Libraries extracted to a specified directory keep their original
name and are never deleted, rather they are reused in later executionsﬂ Libraries extracted to
the default temporary file directory receive a unique name in each extraction and are deleted
when JamaicaAMS terminates. Default: “JAR”.

* JAMAICA_AMS_NUM_JNI_ATTACHABLE_THREADS specifies the initial number of
Java thread structures that will be allocated and reserved for calls to the JNI funtions JNI
AttachCurrentThread or JNI AttachCurrentThreadAsDaemon. Even if this number set to zero
it still possible to call these functions. In this case, the Java threads used for these calls are
allocated dynamically when needed. However, dynamic allocation will fail once the maximum
number of threads has been reached. Default: 0.

2 An extracted library is reused only if it has the same name as the library in the bundle and, if the library entry in the
bundle is signed, if their contents are the same. If the extracted library can not be reused, it is overwritten by the library
in the bundle.

24 March 2025 Version 1.2.1 Page 17

JamaicaAMS User Documentation

2.3.3 Interaction

To interact with JamaicaAMS, Apache Felix Gogo shell is supplied as auto-deploy bundle. After
launching JamaicaAMS, type “help” into the shell to see the list of the available commands and
“help <command-name>", to get specific additional information. Figure shows a list of the
commands in the default setup.

felix:bundlelevel gogo:cat cm:createFactoryConfiguration
felix:cd gogo:each cm:getConfiguration
felix:frameworklevel | gogo:echo cm:getFactoryConfiguration
felix:headers gogo:format | cm:listConfigurations
felix:help gogo:getopt

felix:inspect gogo:gosh

felix:install gogo:grep

felix:1b gogo:history

felix:log gogo:not

felix:1s gogo:set

felix:refresh gogo:sh

felix:resolve gogo:source

felix:start gogo:tac

felix:stop gogo:telnetd

felix:uninstall gogo:type

felix:update gogo:until

felix:which

Figure 2.3: Apache Felix Gogo shell commands

For further details, please refer to the Apache Felix Gogo Shell documentation [1].
Note that...
GoGo shell will immediately terminate JamaicaAMS running in the background, since the inputs ex-
pected by GoGo shell are not provided in this case. This can be avoided by adding the property

“gosh.args=-noninteractive” in conf/system.properties, or using a terminal multiplexer to in-
voke JamaicaAMS, e.g., “screen -m -d ./bin/jams &”.

2.3.3.1 Enhanced Interaction with the Advanced GoGo Shell (JLine)

JLine, an advanced GoGo shell, providing that distinct colorizations and rich commands for
user interactions, is located in the bundles.optional directory. The default GoGo shell,
located in setup/bundle.3/org.apache.felix.gogo.shell-<version>. jar, can
be replaced with the JLine variant to harness advanced capabilities. Ensuring you substi-
tute <version> with the appropriate version number for the path referencing. To have a safe
switching, ensure JamaicaAMS is gracefully shut down to prevent any data loss or missfunc-
tion during the shell replacement, and create a backup of the existing GoGo shell to facili-
tate a smooth rollback if necessary. You can then replace the existing GoGo shell with these

Page 18 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

bundles bundles.optional/org.apache.felix.gogo. jline—-<version>. jar and
bundles.optional/Jjline—-<version>. jar to initiate the switch to JLine.

Note on Usage: While both the JLine and default GoGo shells are useful tools for experimentation
or testing phases, they may not be optimized for production environments. It is not recommended to
deploy any of them in production setups to avoid unintended disruptions or vulnerabilities.

24 March 2025 Version 1.2.1 Page 19

JamaicaAMS User Documentation

2.3.4 Exit Codes

Figure [2.4] shows the exit codes that are currently defined and used by JamaicaAMS, followed by a
complete list of exit codes which are specific to the Jamaica Virtual Machine.

JamaicaAMS Exit Codes
0 | Normal termination
2 | Error while parsing arguments
3 | Framework implementation was not found
4 | Error while initializing the framework
5 | Evaluation timeout has expired

JamaicaVM Standard Exit Codes
0 | Normal termination
1 | Exception or error in Java program
2..63 | Application specific exit code from System.exit ()

JamaicaVM Error Codes
64 | JamaicaVM failure
65 | VM not initialized
66 | Insufficient memory
67 | Stack overflow
68 | Initialization error
69 | Setup failure
70 | Clean-up failure
71 | Invalid command line arguments
72 | No main class
73 | Exec () failure
74 | Lock memory failed

JamaicaVM Internal Errors
100 | Serious error: HALT called
101 | Internal error
102 | Internal test error
103 | Function or feature not implemented
104 | Exit by signal
105 | Unreachable code executed
130 | POSIX signal Siglnt
143 | POSIX signal SigTerm
255 | Unexpected termination

Figure 2.4: Summary of the exit codes.

Page 20 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

2.3.5 Example Bundles

bRl 13

The JamaicaAMS distribution contains several examples, e.g.,“primes-example”, “primes-budget-
example”, and “primes-lower-priority-example”. Each of these 3 bundles does exactly the same: it
calculates prime numbers endlessly, and for each 1000 numbers calculated, it prints in the console
the time spent on the calculation (see Figure 2.7). However, the “primes-budget-example” bundle has
a CPU budgetE] set to 5%. The “primes-example” and “primes-lower-priority-example” do not have
CPU budgets, but have priorities NORM_PRIORITY and (NORM_PRIORITY - 1), respectively.
The bundles used in these examples can be found in /example/primes-example-<version>.jar.

2.3.5.1 How to install a bundle

After starting JamaicaAMS as shown in Section [2.3.1] bundles can be installed. Only installed bun-
dles are available for execution. A bundle is installed using the GoGo Shell “install” command.

> install ../example/primes-example-<version>.jar

It shows the bundle ID after the bundle has been successfully installed, for example as shown in
Figure Note: The command’s outputs are truncated to avoid overflowing text.

jamaica—ams/setup\$./bin/jams

Welcome to Apache Felix Gogo

g! install
~ ../example/primes-example-1.1.0.jar
Bundle ID: 23

g!

Figure 2.5: Install the primes bundle

2.3.5.2 How to query the bundles

The list of currently installed bundles in JamaicaAMS can be seen using the “1b” command. De-
pending to the OSGi bundle lifecycle, bundles could be in different states, e.g., installed, resolved, or
active. For example, Figure shows that the “primes” bundle’s state is Installed. Note: The
command’s outputs are truncated to avoid overflowing text.

3For further information about budgets in JamaicaAMS, please refer to Section

24 March 2025 Version 1.2.1 Page 21

JamaicaAMS User Documentation

g! 1b

START LEVEL 3
ID|State
OlActive

21 |Active
22 |Active
23]Installed |

g!

2.3.5.3 How to start and stop a bundle

| Level | Name

0] System Bundle

3lslfdj-api
3|1slfdj-nop

(0.0.0)10.0.0

(1.7.36)1.7.36
(1.7.36)11.7.36
3| JamaicaAMS Primes Example

(1.1.0)11.1.0

Figure 2.6: Query bundles

A bundle can be started and stopped using the commands “start #” and “stop #”, respectively,
where “#” is a placeholder for the Bundle ID. E.g.:

> start #

and

> stop #

Figure shows the outputs after issuing the commands.

g! start
Computed
Computed
Computed
Computed
Computed
Computed
Computed
Computed
Computed
stop 23
Stopping
g!

23

1000
1000
1000
1000
1000
1000
1000
1000
1000

the worker thread

primes
primes
primes
primes
primes
primes
primes
primes
primes

in
in
in
in
in
in
in
in
in

626ms!

903ms!

1194ms!
1508ms!
1796ms!
2121ms!
2423ms!
2725ms!
3044ms'!

Figure 2.7: Example of a bundle that calculates prime numbers

Page 22

Version 1.2.1

24 March 2025

JamaicaAMS User Documentation

2.3.5.4 How to uninstall a bundle

After stopping a bundle, its state becomes Resolved as shown in Figure[2.8] Note: The command’s
outputs are truncated to avoid overflowing text.

g! 1b
START LEVEL 3

ID|State | Level | Name

OlActive | O]System Bundle (0.0.0)]0.0.0

21 |Active | 3|lslfdj-api (1.7.36)1.7.36

22 |Active | 3]slfd4dj-nop (1.7.36)]11.7.36

23 |Resolved | 3|JamaicaAMS Primes Example (1.1.0)1]1.1.0
g!

Figure 2.8: Stop the primes bundle

The bundle is stopped but it is still existing in the cache of JamaicaAMS. A bundle can be completely
removed using the command “uninstall #7, as shown in Figure[2.9

g! uninstall 23

g! 1b
START LEVEL 3
ID|State | Level | Name
O|Active | O]System Bundle (0.0.0)]0.0.0
21 |Active | 3|lslfdj—-api (1.7.36)1.7.36
22 |Active | 3|lslfdj-nop (1.7.36)1.7.36
g!

Figure 2.9: Uninstall the primes bundle

24 March 2025 Version 1.2.1 Page 23

JamaicaAMS User Documentation

Page 24 Version 1.2.1 24 March 2025

Chapter 3

Tools and Components

In order to interact with JamaicaAMS, and to profit from its functional extensions, it is our recom-
mendation that users employ tools such as the ones listed in this section. Either provided by third
parties, part of aicas’ portfolio or contained in the JDK, those tools are vital to fully optimize the
development and couple the framework to the Industrial IoT (IIoT) environment.

3.1 Development

* Integrated Development Environment—The IDE of choice to write the bundles is Eclipse.
For a practical “step-by-step”” example, please refer to Section [0

* JVMTI Interface—JamaicaVM implements the Java Virtual Machine Tool Interface to sup-
port introspection and debugging of a local or remote Java Virtual Machine. This interface can
also be used from inside common Java IDE:s.

* Code Analyzers—aicas recommends as tools for static source analysis PMD and SpotBugs

(see Section [3.1.1).

* Bndtools—Open source software, that uses bytecode analysis to accurately calculate the de-
pendencies of OSGi bundles. It features a repository model for bundles, that may be referenced
at build-time and can be used to satisfy runtime dependencies. For an introduction to the BND
set of tools, please refer to the Bndtools website [2].

3.1.1 PMD and SpotBugs

These open source tools are two different static source analyzers that are used for the same purpose:
to analyze the code that is produced by a developer.

They detect problematic issues in the code, like missing synchronization, empty catch blocks or
possible null pointer dereferences, classifying major or minor bugs according to potential severity.
Note that code analyzers do not actively change anything in the code.

25

JamaicaAMS User Documentation

PMD as well as SpotBugs follow predefined rulesets, that are built in and compared with the code
in a project. These rulesets contemplate aspects like bad practices and rules concerning for instance
performance, security and correctness.

A brief introduction on how to use those tools follows.

SpotBugs

SpotBugs can easily be installed through the Eclipse Marketplace. It already contains several hundred
rules that can also be extended.

After installation, SpotBugs can be configured to fit a specific category, e.g. performance- or bad
practice oriented. Severity levels can be set from 20 (least) to / (most) severe, with a further separa-
tion on how a bug should be marked (error, info or warning). Single rules can be enabled or disabled
for a further, more focused, analysis (see Figure [3.T).

This can be configured under Window — Preferences — Java — SpotBugs.

Preferences o x
a SpotBugs - v
» General
» Ant analysis effort| Default +
» Code Recommenders
Gradl Reporter Configuration Filter files Plugins and misc. Settings Detector configuration
radle
» Help Minimum rank to report: —
b Install/Update (1is most severe, 20 is least) - Minimum confidence to report: | Medium v
« Java 15 (Of Concern)
» Appearance Reported (visible) bug categories Mark bugs with ... rank as:
» Build Path v i
l‘:4 Eadlplea e Scariest: Warning +
Code Coverage || Malicious code vulnerability S
» Code Style [+ Correctness Scary: Warning ¥
» Compiler [Perf
P — errormance Troubling: Warning
» Debug |__| Security _—
» Editor [¥4 Dodgy code Of concern: | Warning ~
» Installed JREs [| Experimental
JUnit [+ Multithreaded correctness
Properties Files Edit [] Internationalization
SpotBugs
» Maven
b Mylyn
» Oomph
b Plug-in Development
» Run/Debug
» Team Restore Defaults
'i?:' C:‘ Cancel Apply and Close

Figure 3.1: SpotBugs can be easily configured in Eclipse

The rulesets in SpotBugs can also be extended under the Plugins and misc. Setting tab. These
extensions are available online.

Page 26 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

To use SpotBugs, right click on the preferred project and select SpotBugs — Find bugs.

For further details on SpotBugs, please refer to its documentation [9]].

PMD

PMD is as user-friendly as SpotBugs. The plugin we recommend can be downloaded from https:
//sourceforge.net/projects/pmd/. It can also be directly downloaded in Eclipse, from
https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/, through Window
— Install new Software — add. The tool can be configured in a similar way: Window — Prefer-
ences — PMD (see Figure 3.2).

‘ Preferences o x

type filter text a PMD-Plugin Options

»

General General options
» —
Ant [w4 Show PMD perspective when checking code

-

Code Recommenders || Show PMD violations overview when checking code

Gradle |_| Show PMD violations outline when checking code
» Help [Enable using Java Project Build Path. Disable if your Eclipse JVM version is incompatible with .class file versions.
¥ Install/Update I:\ Check code after saving i
b Java
» Maven Maximum reported violations per file per rule +
b Mylyn
» Oomph Priority levels
» Plug-in Development PMD folder annotations can be enabled on the label decorations page [¥ Use custom names

I
H
CPD Preferences | 1 Blocke High I
File Filters B> 2 Critical Medium High
Reports P> 3 Urgent Medium
Rule Configuration =3 4 Importi Medium Low [
» Run/Debug)
} Team shape: 03¢ 0 D OCLHOB 0 r AV ><] color: Name:
Validation
b XML Violations review parameters
(w4 Use PMD style (// NOPMD comment)
Additional text to be appended to review comment :
by {0} on {1}
Sample :
by schmidt on 13.09.18 17:04
Loaaing options
':?:' i;‘ Cancel Apply and Close

Figure 3.2: PMD is configured in a similar manner to SpotBugs

PMD rules are also separated by categories, e.g. “performance”, and severity, e.g. “blocker”. To use
PMD, right click on the preferred project and PMD — Check code.

For further details on PMD, please refer to the online documentation [[7]].

24 March 2025 Version 1.2.1 Page 27

https://sourceforge.net/projects/pmd/
https://sourceforge.net/projects/pmd/
https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/

JamaicaAMS User Documentation

Expected Results

After running either of these tools, a list of bugs will be shown in Eclipse. Each bug can be selected,
to see more detailed information. Both tools also offer an option to export a bug report as a .t xt or
.xm1 file.

In case both tools are deployed on the same project, the results might overlap: However, they will
also be complementary.

Page 28 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

3.2 Deployment

* jarsigner—Signing and verification tool, that uses key and certificate information from a key-
store to generate digital signatures for JAR files (see Section [3.2.1].
3.2.1 jarsigner
JamaicaAMS’s target runtime permits the execution of a bundle JAR file that is signed with a private
key such that the corresponding certificate can be verified by the public key that was put on the target

device (see also d.1.4.1). To achieve this, the bundle <bundlename>. jar must be signed using
the following command:

> jarsigner -keystore <keystore> <bundlename>.jar <alias>

This command uses a key pair generated as in the example below:

Creating a Public/Private Key Pair

The keytool that is part of OpenJDK is required to generate a key pair using the following
command line:

> keytool —genkey —-keystore <keystore> -alias <alias> -validity
<validity>
Enter keystore password: <password>
Re—-enter new password: <password>
What is your first and last name? John Q. Public
What is the name of your organizational unit? SecurityServices
What is the name of your organization? OEM
What is the name of your City or Locality? Karlsruhe
What is the name of your State or Province?
What is the two-letter country code for this unit? DE
Is CN=John Q. Public, OU=Unknown, O=0EM, L=Karlsruhe, ST=Unknown,
C=DE correct? [no]: yes
Enter key password for <<alias>>
(RETURN 1if same as keystore password): <RETURN>

Here, <keystore>, <alias>, and <validity> can be chosen freely.

It is extremely important that the generated file, <keystore>, remains private. It is recom-
mended to install it only on a machine that is not connected to a network and to limit access to a
minimum number of people. Also, the keystore should be protected by a strong password.

24 March 2025 Version 1.2.1 Page 29

JamaicaAMS User Documentation

3.3 Configuration

* Bundle Acceleration—Bundles can be accelerated by compiling methods to machine code.
The resultant compiled code is stored in the Bundle JAR and linked when the bundle is loaded.
There are several tools that can be used to support this process: the JamaicaJAR Accelerator,

a profiling AMS, and the Profile Analyzer. For specific information on how to accelerate an
OSGi Bundle, please see Section[3.3.1]

* Bundle Configuration—The configuration of multiple bundles is made easier through the
implementation of the OSGi Configuration Admin service and the Configurator (see Sec-

tion (3.3.2)).

3.3.1 OSGi Bundle Acceleration with JamaicaAMS

JamaicaAMS does not contain a JiT compiler. Instead, JamaicaVM provides, separately from the
JamaicaAMS, a means of precompiling Java byte code in an OSGi Bundle to machine code with
the JamaicaJAR Accelerator. The advantage of accelerating bundles is improved performance. This
comes at the expense of a larger image and weaving cannot be used. In any case, weaving is not
recommended for realtime embedded systems, since it can adversely affect performance and timing.
All methods compiled by the tool are linked into a shared library that is loaded when the JAR, in
this case bundle, is loaded by JamaicaAMS. Bundles containing computationally intensive code will
benefit the most from acceleration.

The easiest and most common way to use the tool is to simply compile all methods in an OSGi
Bundle or JAR. Since compiling methods in a bundle does increase the size of the bundle, this is
best used for small bundles. However, in larger bundles it may make sense to be more targeted with
compilation. The tool can take a list of methods to compile to provide more selective compilation.

Deciding what to compile becomes increasingly difficult with the size of the bundle. The JamaicaVM
tools suite provides the Profile Analyzer to support this process and the JamaicaAMS comes with a
special runtime for profiling an application. Together these tools can be used to provide more directed
compilation.

Creating A Profile

JamaicaAMS is offered with an additional profiling binary, called the jamsp file, that can be used
to start the framework. This profiling binary is a version of JamaicaAMS that enables the user to
collect information related to the runtime execution. The resulting profiling information is primarily
for accelerating OSGi bundles with the JamaicaJAR Accelerator.

JamaicaAMS profiling binary

The JamaicaAMS profiling binary collects information on the amount of runtime spent for the exe-
cution of different methods. This information is dumped to a file (in /tmp/ jamaica-ams.prof)
after a test run of the application has been performed. This collection of profile information is cumu-
lative; that is, when this file exists, profiling information is appended.

Page 30 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

Using A Profile

The JamaicaJARAccelerator is part of the JamaicaVM tools suite. It is used to compile performance
critical methods to machine code. All methods compiled by the tool are linked into a shared library
that is loaded when the JAR, in this case bundle, is loaded by JamaicaAMS.

Focused Acceleration of an OSGi Bundle

The profiling information is consumed by the Jamaica Profile Analyzer to generate arguments for the
JamaicaJAR Accelerator, the main part of which is a list of methods to compile. Using the Jamaica
Profile Analyzer provides clear documentation about which methods are compiled in the resulting
JAR file. More information about how to use these tools can be found in the JamaicaVM User
Manual [3]]

The XPROF Environment Variable

Another way to profile a running framework is to start JamaicaAMS with the Environment Variable
JAMAICA_AMS_XPROF enabled. This variable enables collecting simple profiling information
using periodic sampling. For detailed information on this subject, please refer to the JamaicaVM
User Manual [3] (cf. Section 12.1.2, option -Xprof).

To execute JamaicaAMS with the periodic sampling enabled, an Environment Variable needs to be
set before JamaicaAMS starts. To export the Environment Variable do as follows:

> export JAMAICA_AMS_XPROF=<value from 0 to 1000>
Example:
> export JAMAICA_AMS_XPROF=100

The value to specify is the number of profiling samples to be taken per second, e.g. in the example
showed here, 100 samples per second.

This profile is used to provide an estimate of the methods which use the most CPU time during
the execution of an application. During each sample, the currently executing method is determined
and its sample count is incremented, independent of whether the method is currently executing or is
blocked waiting for some other event.

The total number of samples found for each method are printed when the application terminates.

3.3.2 Bundle Configuration

Bundles may load configuration data from the jar, from a local file or from a remote location; and
they often require additional configuration, depending on the deployment environment. Furthermore,
when multiple bundles require, each of them, particular configuration files, the result is increased

24 March 2025 Version 1.2.1 Page 31

JamaicaAMS User Documentation

complexity: duplicated files and exception handling code, incoherent file locations and different
fetching procedures.

As a solution, OSGi offers specification for the Configuration Admin service and the Con-
figurator bundle. JamaicaAMS packs the Apache Felix implementation of these bundles in
setup/bundle. 1 of its distribution tree. This section explains how to use these bundles to access,
parse and store configurations in a uniform way.

Note that...

the Apache Felix Configuration Admin and Configurator bundle implement chapters 104 (https://
osgi.org/specification/osgi.cmpn/7.0.0/service.cm.html) and 150 (https://osqgi.
org/specification/osgi.cmpn/7.0.0/service.configurator.html) of the OSGi compendium
specification, being this document the absolute reference.

3.3.2.1 Configurator

Instead of loading the needed configuration data from scattered files, the bundles load the information
from the Configuration Admin service. This service acts as a database, simply storing and providing
the configurations which are delivered by the Configurator. The role of the Configurator is therefore
to fetch and parse configuration files, and then to add the information to the Configuration Admin
service.

The Configurator can load files from the local file system, from the bundle jar or from a
remote location, supporting the HTTP and FTP protocols. It requires a URL to the file
that it should get, and this must contain the protocol to be used (e.g., file:.conf/configl.json,
http://www.yourserver.com/standardConfig.json).

Note that...

a list of the URLs for the files to be loaded must be present in the configurator.initial property, which can be modified
in the conf/config.properties file.

Configuration File Format

A configuration file may contain multiple configurations, which are identified using a persistent iden-
tifier (PID). PIDs are used by the bundles to request a certain configuration from the configuration
admin service. Those PIDs that start with the “:configurator:” prefix contain information or instruc-
tions that are relevant to the Configurator.

An example of PID and configuration can be seen in the listing below:

{
// Resource Format Version
":configurator:resource-version": 1,

// First Configuration

"pid.a":
{
"key": "Va.l",
"some_number": 123

Page 32 Version 1.2.1 24 March 2025

https://osgi.org/specification/osgi.cmpn/7.0.0/service.cm.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.cm.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html

JamaicaAMS User Documentation

s

// Second Configuration
"oid.b":
{

"a_boolean": true
}
}

Configuration files must be written in the JSON format. When those files are not loaded from the
bundle jar, it is mandatory to provide a symbolic-name and a version for the configuration (for an
example, see table 150.1 in section 150.3.1 inhttps://osgi.org/specification/osgi.
cmpn/7.0.0/service.configurator.html).

3.3.2.2 Configuration Admin Service

As already mentioned, the Configuration Admin acts as a database for bundle configurations, storing
them persistently (in the JamaicaAMS cache) and distributing them to concerned bundles whenever
they are updated. The configurations are handled as java.lang.Dictionary objects and stored in the
.properties format.

Retrieving Configurations

There are two ways of interacting with the Configuration Admin: Either synchronously, by fetching
the current available configuration through the ConfigurationAdmin interface, or asynchronously, by
registering a ManagedService that gets notified whenever its corresponding configuration is updated.

Both methods of accessing the bundle configuration are described in the specification, as they are
part of the Configuration Admin service, and are not subject to changes in the different implemen-
tations. Thus a bundle that uses the code discussed in the following subsections will work with any
implementation of the Configuration Admin.

Synchronous Access

Assuming that an implementation of the Configuration Admin service is installed and a correspond-
ing configuration dictionary is available, a bundle can retrieve and update this configuration using the
code presented in te following listing. If no configuration exists, the same code will result in a new
configuration.

// retrieve the service interface
ServiceReference<ConfigurationAdmin>serviceReference=
context.getServiceReference (ConfigurationAdmin.class) ;
ConfigurationAdmin configurationAdmin=null;
if (serviceReference!=null)
{
configurationAdmin= (ConfigurationAdmin)
context.getService (serviceReference);

24 March 2025 Version 1.2.1 Page 33

https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html

JamaicaAMS User Documentation

// fetch the current configuration
Configuration configuration=
configurationAdmin.getConfiguration ("ConfigUserTest") ;
Dictionary props=configuration.getProperties|() ;
// if null,the configuration is new
if (props==null)

{

props=newHashtable () ;
}

// set some properties

props.put (..., ...);
// update the configuration
config.update (props);

Asynchronous Access

A different approach is that bundles can be reconfigured by a configuration provider while run-
ning, thus achieving highly configurable applications. A configuration listener must implement the
ManagedService interface, which provides the notification method updated(Dictionary). The listener
is then to be published as a service, in association with the configuration name it wants to be updated
with.

This approach is also associated with a greater adoption effort, since it imposes a substantial change
to the design of the involved bundles. The possibility of updating a bundle with new configurations
imposes new logical states on the bundle (which could be called “unconfigured”, “configured” and
“running”), while it is in the “active” state. Furthermore, the configuration update occurs in a thread
that belongs to the Configuration Admin (thus the name “asynchronous approach”), which may re-
quire further handling depending on the code to be executed. For example, if no configuration is
present initially, the bundle start method must register a ManagedService and use the update thread
to actually initiate the bundle.

The following listing exemplifies a configuration listener published as an OSGi service, which will
get notified whenever the associated configuration is changed.

private ServiceRegistration configListenerRegistration;

public void start (BundleContext context)
{
Dictionary props=new Hashtable();
props.put ("service.pid", "configurationNameOrPersistanceID") ;
configlListenerRegistration=
context.registerService (ManagedService.class.getName (),
new ConfigurationListener (),props);

public void stop (BundleContext context)
{

if (configlistenerRegistration!=null)

{

configListenerRegistration.unregister();

Page 34 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

configlListenerRegistration=null;

Persistence Managers

In cases where the storage logic needs to be overwritten completely (e.g., when the configuration
needs to be stored remotely or through a database manager), a persistence manager can be used.

The persistence manager created by the user must provide basic functionality (load-
ing, storing and deleting dictionaries) and must be published as an OSGi ser-
vice. It needs to implement the interface PersistenceManager present in the package
com.aicas.jamaica.ams.org.apache.felix.cm, which can be found in the file <path to

JamaicaAMS>/setup/bundle.l/configuration-admin-<version>. jar.

The Configuration Admin can be configured to use a certain persistence manager by providing its
name in the felix.cm.pm property.
Note that...

the persistence manager mechanism is specific to the Apache Felix implementation, not being part of the OSGi spec-
ification of the Configuration Admin service. The PersistenceManager interface present in the JamaicaAMS distri-
bution is the same one created by Apache Felix and documented in http://felix.apache.org/apidocs/
configadmin/1.6.0/org/apache/felix/cm/PersistenceManager.html.

The developer must however consider the different package name, which is, as mentioned above:

com.aicas.jamaica.ams.org.apache.felix.cm.

24 March 2025 Version 1.2.1 Page 35

http://felix.apache.org/apidocs/configadmin/1.6.0/org/apache/felix/cm/PersistenceManager.html
http://felix.apache.org/apidocs/configadmin/1.6.0/org/apache/felix/cm/PersistenceManager.html

JamaicaAMS User Documentation

Page 36 Version 1.2.1 24 March 2025

Chapter 4

Security

The importance of software security cannot be overemphasized in today’s world of the Internet of
Things. As applications become more complex and interconnected, they also become more vulner-
able to various security threats. The OSGi framework, widely used for embedded Java software
development, is no exception. JamaicaAMS leverages the Java and OSGi security models to provide
a complete security concept for dynamically loaded software.

4.1 Foundations of Java Security

The Java Security Architecture is built around the concept of a "sandbox" model. This model re-
stricts the operations that loaded code can perform, and effectively isolates potentially malicious
code from the rest of the system. The key components of this architecture include the bytecode veri-
fier, class loaders, the security manager, authentication, secure communications, and the fundamental
part known as Java Cryptogrphic Architecture.

4.1.1 Bytecode Verification

The bytecode verification acts as a gatekeeper for Java interpreter: when Java source code is com-
piled, it is transformed into an intermediate known as bytecode, which is then interpreted by the JVM
during execution. Before the bytecode is interpreted, the JVM performs a verification process to en-
sure that the bytecode adheres to certain structural constraints. The bytecode verification process
generally involves following steps:

» Checks the bytecode to ensure that the Java language specification is not violated, e.g., no
nonexisting object fields are accessed or private fields are accessed from outside the class.

* Checks dataflow to ensure that method calls are legally structured, for example, method calls
match the expected number and types of arguments.

* Checks whether the bytecode adhears to the structural constraints of Java langauge, for exam-
ple, ensuring there is no illegal data type conversion.

37

JamaicaAMS User Documentation

Based on the inherent characteristics of Java language, this static verification ensures that the byte-
code does not contain operations that could potentially break the Java interpreter and harm the system
as well.

4.1.1.1 Limitations

JamaicaAMS inherits the security limitations of JamaicaVM, therefore, it does not cover all the
functionalities of bytecode verification.

JamaicaVM is not designed for running untrusted code. Byte code that does not fulfill the static
and structural constraints laid out in The Java Virtual Machine Specification, Java SE 8 Edition [15,
Sections 4.1-4.9], might lead to undefined behaviour of JamaicaVM.

Classfile verification is currently limited to an incomplete pre Java-6 (classfile version 49 and older)
style data flow analysis of the bytecode instructions. The verification algorithm is designed to in-
crease compatibility with regards to the order in which classes are loaded. It does not cover all the
functionality described in the JVM specification. Consequently, classfile verification is not sufficient
to ensure correctness of class files that are produced by untrusted tools, that were tampered with or
that are otherwise broken.

4.1.2 Class Loaders

Class loaders play a crucial role of isolating sensitive classes and resources in Java security. They
are responsible for loading classes into the JVM when bytecode has been verified. Originally, Java
treated local classes and remotely downloaded classes differently in terms of security. Local classes
were trusted, but remote ones were not and shall only run in the "sandbox". Class loaders isolates
the namespaces for these classes, that is to prevent untrusted code from accessing sensitive classes
and resources. Later this distinction no longer holds, and both local and remote ones were treated as
untrusted code unless they are authenticated, but class loaders have always maintained the ability to
isolate loaded classes.

There are 3 kinds of class loaders:

* Bootstrap Class Loader: Generally a native implemented code that loads the JDK internal
classes, typically rt . jar and other core libraries located in $JAVA_HOME/ jre/1ib direc-
tory. The Bootstrap class loader serves as the parent of all the other ClasLoader instances.

* Extension Class Loader: The child of the Bootstrap class loader that takes responsible for
loading the extension of the stardard core Java classes usually from $JAVA_HOME/lib/ext.

» System Class Loader: The child of the Extension class loader that takes care of loading
all application level classes from the classpath environment variable defined in the option
—classpath into the JVM,

Class loaders follow the delegation model. When a class loader is requested to load a class, the class
loader will first delegate the loading to its parent class loader. If one of its ancestors loads the class

Page 38 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

successfuly, the class is visible and shared to the class loader. Only if all its ancesters failed, it tries
to load the class itself.

Class loaders provide critical resource security by controlling namespace visibility. Each class loader
creates a namespace, and it shares only to its descendants. For example, 2 distinguish class loaders
without ancestral relationship create 2 distinguish namespaces when loading the same class file. If
the class file have a public static field, each loaded class has its own field and not shared with another.

Class loaders provide isolated namespaces for classes, thus establish a security boundary that prevents
potentially unsafe classes from accessing sensitive classes or resources.

4.1.3 Java Security Manager

Java Security Manager provides fine-grained access control by defining security policies with dele-
gated permissions on API level, compared to the coarse-grained access control of class loaders shown
in Section This section gives the brief introduction to the principle primitives involved in Java
Security manager: permission and policy.

4.1.3.1 Permissions

Permissions represent access to system resources. A permission is essentially a statement that grants
a specific type of access to a particular resource.

Permissions usually require 2 string parameters: name and action. The meaning of these pa-
rameters is determined by the specific permissions. For example, java.io.FilePermission
requires a file path for the name and a comma-separated value, which may include read and write
operations.

Java comes with a set of predefined permissions (sub-classing base class Permission) that cover
many common use cases, such as file access, network access, and property access, for example:

e Java.io.FilePermission, with actions: read, write, execute, delete, and
readLink.

* jJava.net.SocketPermission, with actions: accept, connect, listen, and re-
solve.

* java.security.AllPermission.
* java.util.logging.LoggingPermission, with a single control action.

* java.util.PropertyPermission, with actions read and write.

For example, the permissions below represent the allowance to read the file.txt file, and to
connect the specified host with the port, respectively.

24 March 2025 Version 1.2.1 Page 39

JamaicaAMS User Documentation

// Permission to read a specific file
java.io.FilePermission "/path/to/file.txt", "read";

// Permission to connect to a specific host and port
java.net.SocketPermission "www.example.com:80", "connect";

4.1.3.2 Policy

A policy is a collection of statements (grouped in grant entry) that specify what permissions are
available to code, either sourced from a particular location or signed by a particular certificate issuer,
or executed as particular principals.

Each grant entry binds its permissions to a protection domain, to encapsulate the security character-
istics of a domain. Permissions are granted to protection domains, and all classes belong to a single
protection domain. All classes loaded from a code origin are associated with the code’s protection
domain, thus granting them the permissions granted to the code.

The example of policy file grant entry below grants a permission to read the file file.txt to the
code from the jar example. jar file, and a permission to connect the host www . example.com
at the port 80 to the code signed by my—-common-name.

grant codeBase "file:/path/to/example.jar" {
permission Jjava.io.FilePermission "/path/to/file.txt", "read";
i
grant signedBy "my-common-name" {
permission java.net.SocketPermission "www.example.com:80", "connect";

}i

4.1.3.3 Access Controlling

Access controlling is achieved by checking whether security-sensitive operations have respective
granted permissions. Java provides the SecurityManager class, AccessController class,
and AccessControlContext class for this purpose.

* The SecurityManager is a class that applications can use to implement a custom security
policy. When a SecurityManager is installed, operations that require permissions (like reading
a file or opening a network socket) will invoke the SecurityManager to check if the operation
is permitted.

* The AccessController class is used for making access control decisions based on the
current context—a complete call stack. It allows applications to determine whether a particular
action will be permitted based on the current security policy and context.

* The AccessControlContext class collects the ProtectionDomains of all classes on the
call stack leading to the invocation of the sensitive operation. It is used to check that each
protection domain on the call stack has at least one permission implying (granting) the specific
permission being checked by the method.

Page 40 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

Whenever a Java application needs to operate a possibly restricted command, it checks with Securi-
tyManager to see if the operation is allowed or denied. If the permissions have been set up correctly,
the operation continues, otherwise a runtime SecurityException is thrown.

For example, a jar example. jarreadsafile /path/to/file.txt, and possesses read permis-
sion as shown the example above. A high-level call stack of what happens when this application tries
to read the file is given below.

1. The application invokes the statement to read a file, e.g., new
FileInputStream(“/path/to/file.txt”).

2. The constructor FileInputStream is invoked. Within this constructor (or deeper within
the Java standard library), before the file is actually accessed, security check will see if reading
from the file is allowed.

3. The security check will invoke the class SecurityManager’s checkRead method.

public void checkRead(String file) {
SecurityManager securityManager = System.getSecurityManager ();
if (securityManager != null) {
securityManager.checkPermission (new FilePermission (file, "read"));

4. If the SecurityManager is not installed, the read operation continues.

5. Otherwise, SecurityManager delegates AccessControlContext to check the per-
missions: AccessControlContext.checkPermission (Permission perm) by
walking up the call stack. The permissions for a given class are determined by effectively
using either its signer or code base as a key to look up the associated protection domain to see
which permissions have been granted to it.

6. If the security check fails (e.g., the protection domain of the code is not granted the read
permission to the specific file), an AccessControlException is thrown, as shown below:

Exception in thread "ReadExampleThread"
java.security.AccessControlException:
access denied (java.io.FilePermission /tmp/read-example.txt read)

7. Otherwise, the operation continues without any interruption.

Java’s security manager allows for very detailed control over resources. By using the combination of
permissions, policy files, and the SecurityManager, developers can specify which operations are al-
lowed for code from different sources, down to specific actions on individual files, network addresses,
or system properties.

24 March 2025 Version 1.2.1 Page 41

JamaicaAMS User Documentation

4.1.4 Java Cryptography Architecture (JCA)

The Java Cryptography Architecture (JCA) is a framework that provides a comprehensive set of APIs
and rubost tools for developers to incorporate cryptographic operations in their Java applications. It’s
a part of the Java Security API and serves as the foundation for Java security functionalities related
to cryptography.

The JCA supports a variety of cryptographic operations, including:

Key generation
Encryption and decryption
Digital signatures
Message digests (hashing)

Message Authentication Code (MAC)

These operations allow developers to incorporate strong security features into their Java applications
with relative ease.

JCA was designed around these principles:

Algorithm Independence: Allows developers to use cryptographic services without specifying
the exact algorithm, making the code more adaptable to changes in cryptographic preferences.

Provider-Based Architecture: Cryptographic functionalities are offered by providers, which are
implementations of cryptographic services. This modular approach allows for flexibility and
the addition of new providers as needed.

Implementation Interoperability: Different implementations of the same algorithm can work
together, ensuring seamless integration and compatibility.

Algorithm Extensibility: New cryptographic algorithms can be added without altering the ex-
isting system, ensuring the framework remains up-to-date with the latest cryptographic stan-
dards.

Engine Classes: Predefined classes that offer specific cryptographic functionalities, such as
MessageDigest for hashing or Cipher for encryption and decryption.

Secure Defaults: If a developer doesn’t specify a particular algorithm or provider, JCA chooses
secure and widely-accepted defaults.

The following are some principle primitives that are commonly used in secure programming in em-
bedded IoT environments.

Page 42 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.1.4.1 Public/Private Key Pair

Public key cryptography is the base for Digital Signing. It matches a pair of mathematically related
keys used by an asymmetric key algorithm: a public (PuK) and a private (PrK) key. The Public Key
may be distributed freely, while the corresponding Private Key should only be known to the user. In
the “Java World” keys are often stored in KeyStores (*. jks files).

Owner

Figure 4.1: A Public/Private Key Pair

Messages signed with the private key can only be verified correctly with the public key. This can be
used to authenticate the signer of a message (assuming the public key is trusted). On the contrary,
messages encrypted with the public key can only be decrypted with the respective private key. This
is generally used to check the integrity of a message.

4.1.4.2 Certificates and Chains

It is mandatory for a secure embedded execution environment to accept trust-only applications, there-
fore prevent the potentially malicious code from harming the system. Trust can be constructed by
verifying the certificates of the code. Java provide a common standard for certificates: X.509. The
information commonly stored in a X.509 certificate is shown in Figure 4.2]

X.509 Certificate D

Version Number

Serial Number

Signature Algorithm ID 71 Name
/

Issuer Name
Validity Period ; |Cert
not before /
not after /
Subject Name 4
Subject Public Key Info Y s
Public Key Algorithm / ,
Subject Public Key 4
(Issuer Unique Identifier) ’
(Subject Unique Identifier) ,
(Extensions) 4

Certificate Signature Algorithm 4
Certificate Signature

Figure 4.2: X.509 Certificate

Certificates can be arranged in a chain, forming a so called Chain of Trust. For this the following
conditions must be met:

24 March 2025 Version 1.2.1 Page 43

JamaicaAMS User Documentation

* The issuer of each certificate (except the last one, the Root of Trust) matches the subject of the
superordinate certificate.

* Each certificate (except the last one) is signed by the Private Key of the superordinate certifi-
cate. Hence, its signature can be verified using the Public Key of the superordinate certificate.

An example of Chain of Trust is depicted in Figure

Root (L[0]) L[n-1]

| @Er) @RTD
signs L A———— signs

G —

(possibly Self-SigFed) L[1]
Root (L[0]) Certificate Certificate

Sig*,\
Lin] - B
Certificate

Root: Issuer Name Root: Issuer Name

Lfn-l]: Issuer Name

Root: Subject Name L[1]: Subject Name L[n]: Subject Name

.,

Root.PuK: Subject Public Key L[1].PuK: Subject Public Key L[n].PuK: Subject Public Key

s('Root,PrK): Certificate Signature s'fL[n-l].PrK): Certificate Signature|

Bk @O

;(Root.PrK): Certificate Signature

Figure 4.3: A Certificate Chain

Note that...

Even though called “chain” according to the view from the bottommost certificate towards the root, certificate chains
can span a tree with multiple instances at any level (except the root). This way, in case a certificate issued at a parent
level becomes compromised, all its children can be tracked with their certificates revoked. This breaks the chain
back to the root and makes the signer invalid.

4.1.5 Additional Java Security Frameworks

Beyond the foundational security mechanisms in Java, there are several other frameworks and exten-
sions that cater to specific security needs. These include the Java Authentication and Authorization
Service (JAAS), the Java Secure Socket Extension (JSSE), and the Java Cryptography Extension
(JCE). While we provide a brief overview here, readers interested in a deeper understanding are
encouraged to consult the official documentation and references.

4.1.5.1 Java Authentication and Authorization Service (JAAS)

JAAS is a set of APIs for role-based security that allows developers to integrate authentication and
authorization into their Java applications.

JAAS provides a way for Java applications to authenticate and enforce access controls upon users.
By authentication, it involves verifying the user’s identity, typically by asking for a username and
password, but other mechanisms like smart cards or biometrics can also be used. by authorization, it
can determine what actions or resources the user is allowed to access, when the user is authenticated.
It separates the concerns of user authentication from user authorization, making it a flexible and
modular framework.

Page 44 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

JAAS is commonly used in scenarios where there’s a need to verify the identity of a user (authentica-
tion) and then determine what actions or resources the user can access (authorization). For example,
there might be a login module that checks usernames and passwords against a database, another that
uses LDAP, and another that uses a token-based system. It provides a way to leverage pluggable
authentication modules, which can be changed without altering the application itself.

JAAS supports a pluggable and extensible architecture, allowing developers to integrate various au-
thentication mechanisms without changing the core application logic. It also provides a way to
establish a security context for the user, which can be propagated across various components and
layers of an application.

4.1.5.2 Java Secure Socket Extension (JSSE)

JSSE provides a framework and an API to enable secure Internet communications. It is for secure
communication over networks using protocols such as Secure Sockets Layer (SSL) and Transport
Layer Security (TLS), and offers functionalities to ensure the confidentiality, integrity, and authen-
ticity of data transmitted between two endpoints in a network.

It’s typically used in scenarios where data needs to be securely transmitted over a network, such as
encrypted data transmission, secure web communication, client and server mutural authentication
commonly in embedded IoT world, and any application that requires encrypted communication.

JSSE is also quite useful in OSGi context:

* Secure Remote Services: If OSGi-based applications offer remote services, JSSE can be used
to secure the communication between the service provider and the consumer.

* Bundle Repository Security: When OSGi bundles are fetched from remote repositories, JSSE
can ensure that the transmission of these bundles is secure, preventing tampering or unautho-
rized access during transit.

* Inter-Bundle Communication: In complex OSGi environments where bundles communicate
with each other over a network, JSSE can be employed to encrypt this inter-bundle communi-
cation.

* Integration with External Systems: OSGi applications that integrate with external systems or
services over a network can leverage JSSE to ensure that the data exchanged with these external
entities is secure.

JSSE abstracts the complexities of secure communication, allowing developers to focus on applica-
tion logic. It provides a suite of cryptographic algorithms and protocols, ensuring that data remains
confidential and tamper-proof during transmission.

4.1.5.3 Java Cryptography Extension (JCE)

JCE extends the Java Cryptography Architecture (JCA) (See Section[4.1.4) to support stronger cryp-
tographic capabilities.

24 March 2025 Version 1.2.1 Page 45

JamaicaAMS User Documentation

The distinction between JCA and JCE can be a bit nuanced, especially since they are often used
together. Historically, JCA was the core framework for cryptographic operations, while JCE was an
extension that provided additional cryptographic functionalities. Over time, the boundary between
JCA and JCE has blurred, especially since the JCE has been integrated into the Java Standard Edition
(Java SE) starting from Java 1.4.

Some non-exhausted specific features and algorithms that were traditionally associated with JCE:

* Advanced Symmetric Encryption Algorithms, e.g, AES and Triple DES compared to DES
introduced in JCA.

* Cipher Modes and Padding Schemes, e.g., CBC, CFB, and OFB, and PKCS5Padding.
* Key Agreement Protocols, e.g, Diffie-Hellman key agreement protocol.

* Password-Based Encryption (PBE).

* Advanced MAC Algorithms, e.g., Hash-based Message Authentication Code (HMAC).

* Permission Classes for Fine-Grained Security Control, e.g., CipherPermission,
KeyAgreementPermission, and MacPermission to allow for fine-grained security
control over cryptographic operations.

e PKCS#11 standard, which defines a platform-independent API to cryptographic tokens such
as hardware security modules (HSMs) and smart cards. PKCS#11 Reference Guide [3]] de-
scribes how native PKCS#11 tokens can be configured into the Java platform for use by Java
applications.

Thus, JCE is typically used in scenarios that require advanced cryptographic operations beyond
what’s provided by the standard Java libraries.

In summary, JCE provides a provider-based architecture, similar to JCA, allowing for the integration
of third-party cryptographic libraries. This ensures that Java applications can leverage the latest and
most secure cryptographic algorithms.

4.2 OSGi Security Mechanisms

Although Java security management is powerful, it faces challenges due to the complexity of its
management. This often results in users (such as administrators) viewing security as an obstacle,
while developers face the overhead of ensuring code compatibility in a secure environment. On the
other hand, OSGi security simplifies this situation. It builds on Java’s foundational security, but
introduces simplified security management mechanisms tailored for loosely coupled applications,
making security implementation simpler and more efficient.

This section delves into the comprehensive security mechanisms inherent to OSGi. We will explore
the multi-layered security approach of OSGi, from ensuring the integrity of bundles to controlling
access to services.

Page 46 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.2.1 OSGi Class Loading

The OSGi class loading mechanism is an enhanced version of Java’s class loader, offering more
granular control over symbolic linking within the JVM.

Recall that, Java’s traditional class loading mechanism adheres to a set of foundational principles:

* Delegation: Ensures that the request for class loading is initially forwarded to the parent class
loader. Only if the parent fails to find or load the class does the child class loader step in.

* Visibility: While a child class loader can access all classes loaded by its parent, the reverse
isn’t true. The parent class loader remains oblivious to the classes loaded by its child.

* Uniqueness: To maintain the integrity of the loading process, a class is loaded exactly once.
This is achieved primarily through delegation, ensuring that a child class loader doesn’t reload
a class already addressed by its parent.

Unlike the hierarchical parent-child relationship in standard Java class loaders, OSGi class loaders
operate on a peer-based model: they expose only those classes that a bundle explicitly chooses to re-
veal, and rely on classes exposed by peer bundles if they match the desired version. Therefore, it does
share all classes like in traditional Java application, instead, it allows to isolate the safety-sensitive
classes from the potentially malicious classes by specify the imported and exported packages.

The peer-based model is implemented with a unique mapping table attached to every bundle. This
table dictates which class loader is tasked with providing classes from a specific package to the
current bundle.

Overall, OSGi class loading reduces the tight coupling and visibility between jar files compared to
traditional Java applications, and provides the ability to isolate the access space of classes and allow
for multiple versions of java libraries to coexist in the classpath at the same time.

4.2.2 OSGi Security Manager

OSGi’s dynamic and modular nature presents distinct security challenges that diverse from tradi-
tional Java security paradigms. Specifically tailored to its service-oriented architecture, OSGi’s se-
curity model offers comprehensive control over bundles and their interconnection. In this section,
we will explore the unique security challenges introduced by OSGi, followed by a comprehensive
exploration of its solutions, including the bundle protection domain, OSGi-specific permissions, and
the intricacies of permission checking.

4.2.2.1 OSGi Security Challenges

OSGi is a modular and dynamic framework that allows applications to be constructed from small,
reusable and collaborative components (bundles). This architecture brings forth several security chal-
lenges that OSGi needs to address:

24 March 2025 Version 1.2.1 Page 47

JamaicaAMS User Documentation

* Dynamic Nature: The ability to install, start, stop, update, and uninstall bundles without shut-
ting down the JVM introduces complexities in security management. Ensuring that these oper-
ations don’t introduce vulnerabilities or compromise the system is challenging, e.g., ensuring
only trusted bundles can perform sensitive operations, and security policies and permissions
remain consistent after each operation.

* Modular Nature: In the OSGi framework, applications are modularized into "bundles." Bun-
dles can communicate with each other, which means there is potential for malicious or compro-
mised bundles to affect others. Ensuring secure communicate and isolation between bundles
is crucial. In addition, Bundles can depend on other bundles, by getting services or importing
packages. Ensuring that these dependencies are secure and that a bundle doesn’t maliciously
exploit another bundle it depends on is crucial. Finally, Each bundle might require specific per-
missions, thus managing these permissions without costing huge amount of energy and making
the system overly complex is challenging.

* Authenticity: Given that bundles can be from various providers, verifying the authenticity of
each bundle is essential to prevent malicious code injections.

To address these challenges, OSGi provides a comprehensive security model, including a detailed
permission system, bundle signing, and more. We will explain these details in following sections.

4.2.2.2 OSGi Permissions

At its core, Java enforces constraints on third-party code execution by granting specific permissions.
By assigning varied permissions, Java can achieve distinct and precise operational restrictions. In
contrast, OSGi permissions offer a more dynamic and modular approach, tailored for the unique
challenges of component-based systems:

* Bundle Permission: Controls which bundle a bundle is allowed to require. It is for
dependency security at bundle level.

* Service Permission: Regulates bundle’s service-oriented operations: service registra-
tion and get, i.e., which services a bundle is allowed to publish and/or use.

* Package Permission: Controls which packages a bundle is allowed to import and/or
export.

* Admin Permission: Controls which bundles are allowed to perform sensitive lifecycle
operations, such as install, start, stop, and uninstall.

These permissions together with the standard Java security permissions are distributed in difference
layers of OSGi environment to form a hierarchical and sequential permission judgment paradigm.

» System Permission: Applies to all bundles, serves as a baseline set of permissions that every
bundle will have, unless specifically denied. Typically the system permissions are defined in
a global policy file referred by the osgi.security.policy property. This file defines conditions

Page 48 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

under which certain permissions are granted or denied to bundles. It’s a way for the system
administrator or the framework to impose restrictions or grant additional permissions based on
various conditions.

* Local Permission: It is bundle’s own declaration of what it intends to do—maximum permis-
sions it needs, however, providing more permissions to the bundle is irrelevant because the
Framework must not allow the bundle to use them when they are denied in system policy.

Local permissions are defined in OSGI-INF/permissions.perm file (Bundle Permission
Resource) within a bundle. The bundle permission resource file is mandatory when OSGi
framework is in secure mode. Being empty, syntax-error, or non-existing, will cause the bundle
to have Al1Permission.

The fine-grained permissions allowed by the OSGi framework are very effective with the local
permissions because they can be defined by the developer instead of the deployer.

As alosely-coupled system, third-party code comes and the deployer need to audit the code. It
is difficult to analyse the byte code to get the security requirements of the code, however, it is
much easier to just audit the specification, the bunle permission resource located in the bundle.
It forms the security contracts between the framework and third-party code.

e Implied Permission: Given by the framework automatically when a bundle is installed. They
are required for normal operation, such as File permission for bundle persistent storage area,
and Package permission for importing java . » packages.

The Effective Permissions for a bundle are the union of its implied permissions and the intersection
of its local permissions and the system permissions. This means that for a bundle to have a particular
permission, it must be granted both locally and globally. If either the local or global permissions deny
a specific action, the bundle won’t be able to perform that action. If the local permissions declare
a certain action and the system permissions also allow that action, then that action is part of this
intersection.

Effective = (Local N System) U Implied

4.2.2.3 Bundle Protection Domain
In OSGi, each bundle operates within its own protection domain. This domain determines the per-

missions granted to the bundle, ensuring isolation and reducing the risk of unintended interactions
between bundles.

* Definition: A bundle’s protection domain encompasses the set of permissions assigned to it.

* Implications: This domain-centric approach ensures that bundles operate within their desig-
nated boundaries, preventing unauthorized actions.

24 March 2025 Version 1.2.1 Page 49

JamaicaAMS User Documentation

4.2.2.4 Conditional Permission Admin

OSGi defines Conditional Permission Admin Service as an enhanced version of Java Security Man-
ager.

Conditional Permission Admin Service supports flexible condition definition to grant permissions to
bundle’s protection domain. In traditional Java security architecture, when a permission checking
request is issued for an operation, JVM checks whether all classes (i.e., all protection domains where
classes are located) referred in the call stack have the required permission. Permissions are granted
to a protection domain based on 2 conditions: location of the code base and signer of the code base.
Compared to Java’s simplistic conditions, Conditional Permission Admin Service improves on this
by introducing an abstract condition concept, which supports permission granting based on arbitrary
conditions.

Thus, Conditional Permission Admin Service allows for dynamic assignment of permissions based
on fine-grained conditions. For example, we can create a condition to only grant permissions based
on license status via remote server communication. This provides a flexible way to manage security
policies, ensuring that bundles only get the permissions they absolutely need.w

When a security check is performed at runtime:

The framework first checks if the action being attempted by the bundle is declared in its local per-
missions. If the action isn’t declared in the local permissions, the check fails immediately.

If the action is declared in the local permissions, the framework then evaluates the global OSGi policy
file. It traverses the policy entries in order to determine if the action is allowed or denied based on
the conditions specified.

The first matching entry in the OSGi policy file determines the outcome. If it’s an ALLOW entry that
matches, the action is allowed. If it’s a DENY entry that matches, the action is denied.

4.2.2.5 Differences from Java’s Security Model

While both Java and OSGi aim to provide a secure environment for code execution, their approaches
differ significantly due to their underlying architectures.

* Policy Management: OSGi’s policy management, especially with the Conditional Permission
Admin service, offers more granularity and dynamicity compared to Java’s static policy files.

e Permission Checks: OSGi’s dynamic nature requires real-time permission checks, ensuring
that bundles adhere to their permissions even when the environment changes.

* Modularity: OSGi’s modular approach, with its service-oriented architecture, necessitates
unique permissions like service and package permissions.

OSGi’s security model, while complex, offers a robust framework for managing permissions in a
dynamic and modular environment. By understanding its intricacies, developers can harness its ca-
pabilities to build secure and modular applications.

Page 50 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.2.3 Code Signing in OSGi

To ensure the integrity and authenticity of bundles, OSGi supports code signing. Bundles can be
signed using a private key, and then verified using the corresponding public key before installation.
This ensures that only bundles from trusted sources are installed and run.

The OSGi Security Layer is based on the Java security architecture. It provides the infrastructure to
deploy and manage applications that must run in controlled and resource constrained environments.
Both JAR signing and the Java security manager are used.

For JamaicaAMS, the primary requirement for security is to ensure that only code that has been
approved can run on the framework and that code can only use those facilities which are approved.
This means that JamaicaAMS must know how to determine whether or not the source which provided
the code has been validated and what internal facilities that code may use. JamaicaAMS uses X.509
certificates and the Java security manager provides a sound security mechanism.

As part of its security mechanisms, JamaicaAMS enables the system owner to determine who may

write applications (bundles) for its application management system and to provide fine-grained con-
trol of what each application may access in the system. Each application provider is identified via

one or more certificates with associated permissions.

4.2.4 Signed JAR File

An OSGi framework authenticates code by checking the signature on the JAR files which contains
the code. The signature on the JAR file makes it possible to incorporate a JAR file as a leaf into a
Chain of Trust. Permission associated with the signature determine which service and APIs a given
bundle may use. Figure .4 shows the security-related content of a JAR file.

IR ‘ IR
IMETA-INF P

content |

dins Ll MANIFEST.MF Signature
r ,/ h(MANIFEST.MF) | s(Signer.PrK)
file[i] 1| [n(fite[o]) :
- I 1 [h(file[...]) Signer AN
|| [h(file[n]) Certificate

Signer: Subject Name
!

,/ Signer.PuK: Subject Public Key

IMETA-INF

Figure 4.4: A Signed JAR file

However, before a JAR is signed, the creation of a public-private key pair and the corresponding
certificate is needed. Furthermore, the public key used for verification of a certificate must be present
on the target device. For more information on the process of signing a JAR file, please refer to

Section

24 March 2025 Version 1.2.1 Page 51

JamaicaAMS User Documentation

OSGi Core Release 8 specifies the following requirements.
JAR Structure and Manifest

OSGi JARs must be signed by one or more signers that sign all resources except the ones in the
META-INF directory; the default behavior of the jarsigner tool. This is a restriction with respect
to standard Java JAR signing; there is no partial signing for an OSGi JAR.

The OSGi specification only supports fully signed bundles. The reason for this restriction is be-
cause partially signing can break the protection of private packages. It also simplifies the security
API because all code of a bundle is using the same protection domain.

Signature files in nested JAR files (For example JARs on the Bundle-ClassPath) must be ignored.
These nested JAR files must share the same protection domain as their containing bundle. They
must be treated as if their resources were stored directly in the outer JAR.

Each signature is based on two resources. The first file is the signature instruction file; this file
must have a file name with an extension .SF. A signature file has the same syntax as the manifest,
except that it starts with Signature-Version: 1.0 instead of Manifest-Version: 1.0.

The only relevant part of the signature resource is the digest of the Manifest resource. The name of
the header must be the name algorithm (e.g. SHA1), followed by -Digest-Manifest. For example:
Signature-Version: 1.0

SHA1-Digest-Manifest: RIpDp+igoJ 1kxs8CSFeDtMbMq78=

MD5-Digest-Manifest: 1Isl6HranRNHMY27SK8M5qMunR4=

The signature resource can contain name sections as well. However, these name sections should
be ignored.

If there are multiple signers, then their signature instruction resources can be identical if they use
the same digest algorithms. However, each signer must still have its own signature instruction file.
That is, it is not allowed to share the signature resource between signers.

Source: https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf.

Page 52 Version 1.2.1 24 March 2025

https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf

JamaicaAMS User Documentation

4.2.5 Authentication and Permissions

In order to ensure that a tampered bundle will be detected by JamaicaAMS’s security mechanism,
before a bundle can be distributed for use on the target device, it needs to be signed by the platform
provider or a trusted entity using a public/private key signature. All files in the JAR need to be
included in the signatures, including resources and not only class files.

On the target device, JamaicaAMS verifies the signature against a public key that is pre-installed on
the device. Permissions of all accesses to resources must be checked and resource budgets must be
enforced during execution.

Permissions

The OSGi Framework uses Java 2 permissions for securing bundles. Each bundle is associated
with a set of permissions. During runtime, the permissions are queried when a permission is requested
through the Security Manager which is a software component in charge of permission validation for
the bundles.

The management of the bundle’s permissions is handled through “Conditional Permission Admin”,
“Permission Admin”, or another security agent. The Apache Felix implementation includes “Per-
missionAdmin” and “ConditionalPermissionAdmin”, provided by a “framework.security” extension
bundle. JamaicaAMS incorporates the “org.apache.felix.framework.security” as “bundle.1” into the
framework.

4.3 Configuring Security for JamaicaAMS: A Step-by-Step
Guide

JamaicaAMS’s security framework is built upon the foundational principles of both Java and OSGi.
While previous sections provided an overview of the security mechanisms inherent to Java and OSGi,
this section delves deeper into the specific security configurations tailored for JamaicaAMS, eluci-
dated with practical examples.

4.3.1 Initial Setting Up

Security is disabled when the system property org.osgi.framework.security is undefined.
To enable security of JamaicaAMS, you need to establish a system configuration file with the follow-
ing specifications:

org.osgi.framework.security=osgi

Jjava.security.policy=<path to a Java global policy file>

Jjamaica-ams.security.policy=<path to an 0SGi global policy file>
org.osgi.framework.trust.repositories=<path to a trust store>

By default, JamaicaAMS extends full permissions to all bundles operating within its en-
vironment. However, individual bundles have the flexibility to limit these permissions by
specifying local constraints. The auto-deployed Java global security policy file, located at
conf/Jjava.global.policy, delineates these broad permissions, as showcased below:

24 March 2025 Version 1.2.1 Page 53

JamaicaAMS User Documentation

grant {
permission Jjava.security.AllPermission;

}i

On top of this, the OSGi global policy file, located at conf/osgi.global.policy, also grants
all permissions without reservation:

ALLOW {
(jJava.security.AllPermission "*" "x")
} "Give AllPermission to all Bundles"

Lastly, the trust repositories, defined by the org.osgi.framework.trust.repositories property, should
encompass the trust anchors that JamaicaAMS relies on. For an OSGi bundle to be considered as
properly signed, it must be authenticated using a certificate present in this trust store. Furthermore,
the bundle’s integrity is ensured only if it can be successfully decrypted using a public in this trust
store. In the OSGi global policy file, you have the flexibility to adjust permissions, e.g, for lifecycle
of bundles, based on whether a bundle is signed or based on the bundle’s location.

In this section, we detailed the initial setup required to enable security within JamaicaAMS. By de-
fault, security remains disabled unless the system property org.osgi.framework.security
is defined as osgi. Once enabled, JamaicaAMS provides a comprehensive security framework,
granting all bundles full permissions by default. However, this broad access can be fine-tuned at the
individual bundle level, allowing for a more granular security approach. The system relies on both
Java and OSGi global policy files to outline these permissions. Additionally, the trust store plays a
pivotal role in ensuring that only properly signed and authenticated OSGi bundles operate within the
environment. This setup ensures a robust and flexible security mechanism, allowing developers to
strike a balance between accessibility and protection.

4.3.2 Generating Self-Signed Certificates

To ensure the integrity and authenticity of bundles installed on JamaicaAMS, it’s essential to sign
them using a private key and then verify them using a trusted certificate. This section provides a
step-by-step guide on generating a keystore, exporting a certificate, and creating a truststore with a
self-signed certificate, which can be used for this purpose.

4.3.2.1 Generating a Keystore with a Key Pair

Ensure you have the Java Development Kit (JDK) installed on your machine, as we’ll be using the
keytool utility that comes with it.

1. Open a terminal or command prompt.
2. Navigate to the root directory of the JamaicaAMS distribution.

3. Use the following command to generate a key pair and store it in a keystore:

Page 54 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

> keytool —-genkeypair -v

—keystore my-keystore. jks —-keyalg RSA

~keysize 2048 -validity 365

—alias my-key-alias

—dname “CN=my-common-name, ou=my-organization-unit,
o=my-orgnization, l=my-city, c=my-country-code”

* -keystore my-keystore.jks: This specifies the name of the keystore where the key pair will be
saved.

» -keyalg RSA: This specifies the key algorithm to be used (RSA in this case).

* -keysize 2048: This defines the size of the key.

* -validity 365: This sets the validity period of the key pair in days.

* -alias my-key-alias: This sets an alias for the key pair, which will be used later when signing
bundles.

* -dname “CN=my-common-name, ou=my-organization-unit, o=my-orgnization, l=my-city,
c=my-country-code”: This Distinguished Name contains the details for the certificate, later
you could assign specific permissions based on the distinguished name.

This command creates a new keystore named my—keystore. jks, generates a key pair (private and
public keys) using the RSA algorithm, and stores the key pair in the keystore protected by passwords.
Set a password for the keystore when prompted. Remember this password, as you’ll need it later.

4.3.2.2 Generating a Self-Signed Certificate

Use the following command to generate a self-signed certificate:

> keytool -—-exportcert -v
—alias my-key-alias —-file my-certificate.crt
—-keystore my-keystore. jks

* -alias my-key-alias: Use the same alias as specified during key pair generation.

* -file my-certificate.pem: This specifies the name of the file where the certificate will be saved.

Enter the keystore password when prompted.

NOTE: For the sake of simplicity in this guide, to facilitate the access to the truststore in Ja-
maicaAMS, it is recommended not to set a password (i.e., pressing Enter key directly when pass-
word prompted) for the truststore

This command actually exports the certificate (public key) associated with the alias my-key-alias
from the keystore my-keystore. jkd to a file named my-certificate.crt.

24 March 2025 Version 1.2.1 Page 55

JamaicaAMS User Documentation

We use self-signed certificates in this guide since they are good enough for testing and local de-
velopment purpose, but they should not be used in production environments. For production, it is
mandatory to obtain a certificate from a trusted Certificate Authority (CA). You need generate a Cer-
tificate Signing Request (CSR) from the keystore and send it to a CA, and import the response (a
certificate signed by CA using CA’s private key) to your Trust Store, therefore, you use a chain of
certificates (where CA’s self-signed certificate is the ancestor on the chain) instead of the self-signed
certificate.

It is a good practice to verify the contents of the certificate to ensure it was created correctly.

> keytool -printcert -file my-certificate.crt

4.3.2.3 Importing the Self-Signed Certificate into a Truststore

> keytool —importcert -file my-certificate.crt
-keystore my-truststore. jks
—alias my-key-aicas

This command creates a truststore named my-truststore. jks and imports the certificate
my—-certificate.crt intoit.

Up to now, we have a key pair stored in our keystore my-keystore. jks and a self-signed certifi-
cate in our truststore my-truststore. jks. Next we will use the private key from the keystore to
sign our bundles and the certificate to verify them on JamaicaAMS.

4.3.3 Signing a Bundle

Again, ensure you have the Java Development Kit (JDK) installed on your machine, as we’ll be using
its another utility named jarsigner that comes with it.

Taking the auto-deployed bundle primes located at examples/primes—-<version>. jar file
as example, sign this bundle using the keystore my-keystore. jks:

> jarsigner -keystore my-keystore. jks
—-signedjar primes—-<version>-signed. jar
primes—-<version>.jar my-key-alias

This command users the jarsigner to sign the primes—<version>. jar bundle with the key
pair associate with the alias my—-key—-alias in the keystore my-keystore. jdk. The signed
bundle will be saved as primes—<version>-signed. jar.

Before deploying the signed bundle to JamaicaAMS, it is a god practice to verify its signature to
ensure the bundle is signed properly:

> Jjarsigner -verify -verbose -keystore my-keystore. jks
—certs primes-<version>-signed. jar

Page 56 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

This command checks the validity and other details of the signed jar file, as shown below:

[entry was signed on 14/8/23 20:39 PM]
X.509, CN=JamaicaAMS, OU=Engineering, O=aicas GmbH,
L=Karlsruhe, ST=Baden-Wurttemberg, C=DE
[certificate i1s valid from 14/8/23 20:40 AM
to 14/8/24 20:39 AM]

4.3.4 Configure JamaicaAMS to Trust the Signed Bundle

Recall that JamaicaAMS security has been activated as illustrated in Section 4.3.1, we can now
configure JamaicaAMS to trust and grant permissions to the signed bundle.

To configure JamaicaAMS to trust signed bundle, we need to update the
org.osgi.framework.trust.repositories property to point to the previously generated truststore
my-truststore. jks file, therefore, JamaicaAMS will utilize the truststore to verify the signed
bundle.

> org.osgi.framework.trust.repositories=<path to
my-truststore. jks>

4.3.5 Configure JamaicaAMS to Grant OSGi Global Permissions

To grant permissions to bundles signed by a specific signer and deny permissions to other bundles,
we can update the osgi.global.policy file as follows:

ALLOW {
(org.osgi.framework.AdminPermission
" (signer=0=aicas GmbH, *)" "lifecycle")

} "Allow installation of properly signed Bundles"

DENY {
(org.osgi.framework.AdminPermission "x" "lifecycle")
} "Deny installation of all other Bundles"

ALLOW ({
(java.security.AllPermission "x" "x")
} "Give AllPermission to all Bundles"

In the policy above, the first rule allows bundles signed by O=aicas GmbH to have lifecycle permis-
sions, 1.e., they can be installed, started, stopped, etc. The second rule denies lifecycle permissions
to all other bundles, and the third rule grants all permissions to all bundles, as defined by the default
deployment of JamaicaAMS, and hereby we refine this board access to necessary permissions using
first 2 rules.

1. As a next step, the signed bundle will be installed and demonstrated. To do so:

24 March 2025 Version 1.2.1 Page 57

JamaicaAMS User Documentation

* Open a terminal, go to the setup directory of the JamaicaAMS distribution and start Ja-
maicaAMS by entering “. /bin/jams”

* Enter “install ../example/primes—-<version>-signed. jar”

* Enter “start” ID and “stop” ID to run and stop the bundle

2. After running the signed versions of the bundle “primes”, try to install the unsigned bundle
example/primes—-<version>. jar to get the security check and the “Access denied”
message displayed.

3. To see the IDs, you can enter “1b” (for “list bundles™)

With these settings, unsigned bundles or bundles signed by other entities will be denied lifecycle
permissions, ensuring that only specific signed bundles (i.e., trusted bundles) can be installed and
executed.

4.3.6 Configure JamaicaAMS to Grant OSGi Local Permissions

The global policy file to assign the same set of permissions to all bundles. While this approach
provides a uniform security policy, it lacks the flexibility to cater to the specific needs of individ-
ual bundles and does not support dynamic permission management when bundles are installed or
uninstalled.

Local permissions in OSGi allow bundles to specify the exact permissions they require to operate.
These permissions are defined in a policy file within the bundle. In this section, we’ll walk through
two examples to demonstrate how to set up local permissions for specific bundles in JamaicaAMS.

4.3.6.1 Grant Local Permissions to a File Write Bundle

The first bundle we’ll consider is designed to create and write the text "Hello World!" to a file located
at /tmp/local-permission—-test.txt. When the bundle stops, it will delete this file.

To grant the necessary file write and delete permissions, we create a local permission file named
permissions.perm with the following content:

(jJava.io.FilePermission "/tmp/local-permission—-test.txt" "write, delete")
(org.osgi.framework.PackagePermission "org.osgi.framework" "import")

This file should be placed in the specific folder OSGI-INF within the bundle. The major logic of
the bundle is shown in the provided source code snippet.

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

import java.io.BufferedWriter;
import java.io.FileWriter;

import java.io.IOException;

public class FileWriteBundleActivator implements BundleActivator {

Page 58 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

private static final String FILE_PATH = "/tmp/local-permission-test.txt";

QOverride
public void start (BundleContext context) throws Exception {

try (BufferedWriter writer = new BufferedWriter (

new FileWriter (FILE_PATH))) {
writer.write ("Hello World!");
}
}
@Override

public void stop (BundleContext context) throws Exception ({

java.nio.file.Files.deletelIfExists(java.nio.file.Paths.get (FILE_PATH)) ;

The syntax for the permissions.perm are:

conditions ::= ('[' gname quoted-stringx ']')=
permissions ::= ('(' gname (quoted-string
quoted-string?)? ')')+

4.3.6.2 Grant Local Permissions to a Host Resolving Bundle

Our second bundle aims to resolve the hostname 1ocalhost and print the result to the console.

The required network resolve permission is defined in a local permission file named
permissions.perm:

(java.net.SocketPermission "localhost:0" "resolve")
(org.osgi.framework.PackagePermission "org.osgi.framework" "import")

Like the previous example, this file should be placed in OSGI-INF folder within the bundle. The
major logic of the bundle is illustrated in the provided source code snippet.

import
import

import
import

import

public

org.osgi.framework.BundleActivator;
org.osgi.framework.BundleContext;

java.io.BufferedReader;
Java.io.InputStreamReader;

java.net.InetAddress;

class NetworkBundleActivator implements BundleActivator {

@Override
public void start (BundleContext context) throws Exception {

InetAddress address = InetAddress.getByName ("localhost");
System.out.println ("Ping Result: " + address.getHostAddress());

@Override

24 March 2025 Version 1.2.1 Page 59

JamaicaAMS User Documentation

public void stop (BundleContext context) throws Exception {
// No cleanup required for this example

}

These 2 bundles have their own permissions and have flexibility to update permissions they require.
This fine-grained secure management provides a more granular and flexible security model, make it
easier to audit and enforce the permissions needed by each bundle, and to enhance the security of the
system.

4.4 JamaicaAMS Security Protection

Trustworthiness is paramount for embedded systems, underpinned by five fundamental pillars:
Safety, Security, Privacy, Resilience, and Reliability. While ensuring security and privacy for offline
devices can be straightforward, it becomes complex for connected devices that demand stringent se-
curity, like automotive head units. A device’s connection introduces vulnerabilities, making security
pivotal for maintaining the other trustworthiness pillars. Thus, the security execution of JamaicaAMS
is crucial for its success.

4.4.1 Common Understanding of Computer Security

Before diving into the details of how security is provided by JamaicaAMS, it is important to under-
stand what is meant by security and what the common attack scenarios of connected systems and
how they apply to connected embedded devices. The focus is on computer security:

“Computer security, also known as cybersecurity or IT security, is the protection of
computer systems from the theft and damage to their hardware, software or information,
as well as from disruption or misdirection of the services they provide.” [14]

The attacks to consider are not only via a network, but also direct access to the hardware. As far
as they apply, JamaicaAMS must defend against these attacks. The JamaicaAMS framework must
provide, together with the rest of the system, effective counter measures for each of the applicable
scenarios.

4.4.2 Common Vulnerabilities and Attacks

The common vulnerabilities and attacks are well documented. Wikipedia describes a large collection
of network vulnerabilities and attacks [13]. These are summarized here to provide a basis for the
security requirements of the JamaicaAMS framework.

Page 60 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

System
; \ Software
OS5 level attacks attacks
(OS5 bugs, (bugs,
misconfiguration) error,
malicious
code)
HW End User
level
attacks
(HW
bugs,
physical
attacks)
(out of
scope)
Internet Connector CAN bus

Figure 4.5: System Picture

4.4.2.1 Backdoor

A backdoor in a computer system, a cryptosystem, or an algorithm, is any secret method of bypassing
normal authentication or security controls. It may exist for a number of reasons, including by original
design or from poor configuration. It may have been added by an authorized party to enable some
legitimate access, or by an attacker for malicious reasons. However, regardless of the motive for
creating a backdoor, each one creates a vulnerability.

4.4.2.2 Denial of Service (DoS)

Denial of service attacks (DoS) are designed to make a machine or network resource unavailable for
its intended users. Attackers can deny service to individual victims, such as by deliberately entering
a wrong password enough consecutive times to cause the victim account to be locked, or they may
overload the capabilities of a machine or network and block all users at once. While a network attack
from a single IP address can be blocked by adding a new firewall rule, many forms of Distributed
denial of service (DDoS) attacks are possible, where the attack comes from a large number of points,
where defenses is much more difficult. Such attacks can originate from the zombie computers of a
botnet, but a range of other techniques are possible including reflection and amplification attacks,
where innocent systems are fooled into sending traffic to the victim.

24 March 2025 Version 1.2.1 Page 61

JamaicaAMS User Documentation

4.4.2.3 Direct Access

An unauthorized user gaining physical access to a computer is most likely able to directly copy data
from it. He may also compromise security by making operating system modifications, installing
software worms, key loggers, covert listening devices, or using wireless mice. Even when the system
is protected by standard security measures, bypassing these may be possible by booting another
operating system or tool from a CD-ROM or other bootable media. Disk encryption and Trusted
Platform Module are designed to prevent these attacks.

4.4.2.4 Eavesdropping

Eavesdropping is the act of surreptitiously listening to a private conversation, typically between hosts
on a network. For instance, programs such as Carnivore and NarusInSight have been used by the FBI
and NSA to eavesdrop on the systems of internet service providers. Even machines that operate as a
closed system, i.e., with no contact to the outside world, can be eavesdropped upon via monitoring
the faint electromagnetic transmissions generated by the hardware; TEMPEST is a specification by
the NSA referring to these attacks.

4.4.2.5 Spoofing

Spoofing is the act of masquerading as a valid entity through falsification of data, such as an IP
address or user name, in order to gain access to information or resources that one is otherwise unau-
thorized to obtain. This can be done in tandem with phishing (compare Section[4.4.2.§), and can lead
to privilege escalation.

4.4.2.6 Tampering

Tampering describes a malicious modification of a system. “Evil Maid” attacks and security services
planting of surveillance capability into routers are examples. Preventing these may require hardware
changes.

4.4.2.7 Privilege Escalation

Privilege escalation describes a situation where an attacker with some level of restricted access is able,
without authorization, to elevate his privileges or access level. For example, a standard computer user
may be able to fool the system into giving them access to restricted data; or even to “become root”
or obtain administration privileges and thereby obtaining unrestricted access to a system.

4.4.2.8 Phishing

Phishing is the attempt to acquire sensitive information such as user names, passwords, and credit
card details directly from users. Phishing is typically carried out by email spoofing or instant mes-
saging, and it often directs users to enter details on a fake website whose look and feel are almost
identical to the legitimate one.

Page 62 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.4.3 Attack Levels

As depicted in Figure 6| there are several levels of attack surfaces. Together with the possible attacks
they span a matrix as in Table 4.1| That matrix will provide guidance throughout this document. In
the matrix a X means “not (yet) covered”, a v means “covered”, a @ means “put out of scope”, and
a < means “described in the surrounding chapter”.

BEundle Bundle
JamaicaAMS
k. v
c Device Controller API CAN API Framework Extension
ore
Software - Libraries
attacks Implementation Implementation
(bugs,
error,
malicious
code)
JamaciaV'M
Java Standard API ¥ y :
i 1 |
| : java.net : RTSJ API
i H |
0s
CAN Library,
e.g..SocketCAN
0S level attacks k. v
. (OS_bugs._ Kernel Dehits MW Remote Access Graphics
misconfiguration) Control
L \ v y
cpu Mabite N, WsEHW CAN Driver Display Driver
Driver Driver
HW Mohbile NW Connector .
level | Memory | | HW ‘e.g.. USB P°”| ‘ CAN HW | Display
attacks
(HW
bugs,
physical
attacks)

(out of
scope)

Lo A

Internet Connector CAM bus

A

End User

Figure 4.6: Security Architecture

4.4.3.1 Hardware Attacks

Hardware attacks include physical destruction of the device, opening sealed electrical connectors,
but also the application of technical tools to gather information about the hardware architecture and
hidden secrets. Since the scope of this document is software platforms, such as JamaicaAMS, where
there are limited means of guarding against physical access to the device, these must be considered
separately in the hardware architecture.

24 March 2025 Version 1.2.1 Page 63

JamaicaAMS User Documentation

Table 4.1: Coverage Matrix

=
S
) =
ke o =
g% <QE) g o | S| o
i S| E| 5| |
S s 8l2 €| &|2|E
2 =8|35 |79 = | =
S8 5|z || E|&|2
RlAlAL | aE &~
Hardware Level X | X[X| X | X | X]| X |X
Firmware Level X | X | X| X | X | X]| X |X
ApplicationLevel | X | X | X | X | X | X | X | X

4.4.3.2 Firmware Attacks

Firmware is vulnerable to known issues due to errors in the OS software or a misconfiguration of the
system widening the attack surfaces. Since most firmware and OS software is written with unman-
aged languages, the scope for error is quite large. Buffer overruns are particularly problematic. The
only real defense is a proper design process with thorough verification.

4.4.3.3 Application Level Attacks

The most obvious attacks can take place at application level as depicted in Figure {.6] since a full
programming interface is provided. Aside from using a managed language to reduce the scope of
programming errors, three techniques are available for reducing this risk: modern language, a fine-
grained security model, and author identification via code signing. The type-safe language verifies the
intermediate code before execution and runtime range-checking ensures that memory access safety;
the permission system can be used to provide minimal access for a given program class and a signa-
ture can be used to find the source of an error to audit the processes used to create software.

4.4.4 Deriving Attack Scenarios

Given the aforementioned attacks, a set of plausible attack scenarios for a connected embedded de-
vice, taking automotive head-unit as an example, can be derived. This forms the basis for security
requirements for JamaicaAMS. In any case, it should be noted that this list, and in fact any list, cannot
be complete! As in war, attacks and defenses evolve continuously. It is not uncommon to strike a
balance between security and performance.

4.4.4.1 Backdoors

Any hardware and software component might keep a backdoor open, which also can be attacked.
Though limiting permissions helps by preventing code that does not need direct network access from
opening a backdoor, this attack can only be fully prevented by tracking the functionality of the system
soundly. The responsibility of not providing a backdoor must be enforced by contract on each and

Page 64 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

every component provider. The functionality of the system must be tightly specified and verified with
the running system.

4.44.2 Forced System Breakdown by Signal Input (DoS)

Any open interface, e.g., network, bus, or display, can be flooded with signals to achieve a system
overload and denial of service. Hardware and software components must be designed with regard to
preventing this kind of attack. Limiting the CPU available to software that may be affected can help
keep the system alike, but no general solution is available. This does mean the system must be able
to continue to work autonomously for the duration of the attack.

4.4.4.3 System Access

At runtime, the runtime system, both hardware and software, must be sealed against unauthorized
access from any direction. Possible attack vectors of access are via code, terminal, network, or
configuration. All access should be authenticated, preferably with more than one factor.

4.4.4.3.1 Accessby Code/API Since a head-unit is designed to run third-party code, the runtime
system must make sure, that this code can only use the functionality actually required for its correct
function and no more.

4.4.4.3.2 Access by Terminal / HMI In any system, the access to a terminal is security critical.
A shell or application can provide arbitrary functionality. This attack surface can be managed by
distributing roles and implementing user authentication on the system level. Limiting API access can
also play a role here.

4.4.4.3.3 Access by Network The surface to the network must be seen very critical because this
is the most exposed attack surface of all. The designer must assume, that literally anybody can try to
access and break the system at this entry. Limiting ports open to traffic originating from the network
and restricting outgoing traffic to verified partners can reduce the opportunity for such access. It is
better to call out to a known set of hosts, rather than have an open port. Any input must be properly
checked in order to reject incorrect input and prevent code injection. This is particularly an issue
with access over a web server.

4.4.4.3.4 Access by Configuration The system is designed to allow a certain level of configura-
tion by the integrator end user. Signatures are used to protect the integration configuration. For end
users, the scope of the configuration must be clearly limited to ensure that new, unforeseen attack
surfaces cannot be created.

24 March 2025 Version 1.2.1 Page 65

JamaicaAMS User Documentation

4.4.4.4 Listening to DATA IN MOTION

At least some of the data to be processed or communicated is sensitive. The software and even the
hardware shall ensure, that this data is not exposed to unauthorized readers. This applies not only
to data from and to the internet, but also data from and to the human interface (display) and volatile
data in the system itself. Encryption is an important technique for keeping such data secure.

4.4.4.4.1 Data Send to or from the Internet Several possible attack methods must be considered
when sending data over the internet. They include sniffing the raw signal as well as trying to fake
the endpoint or link into an existing connection. All internet connection must be considered fully
exposed.

4.4.4.4.2 Data Send over Other Connectors The use of other connectors carrries the risk of
importing malware or at least open an entry point for system manipulation. The number of open
connectors should be limited and unneeded connectors should be disabled. Also, the protocol for
importing data from a connector must be sound so as not to import malware. Any data leaving the
system via an accessible connector must be seen fully exposed.

4.4.4.4.3 Data on the Display The Display may not provide access or visibility to any sensitive
data.

4.4.4.4.4 Datain the System Even though the system can be seen as a sealed box and any phys-
ical intrusion into the system as a major act of criminality, one should consider that most secret data,
user accounts and passwords, private keys, and state-of-the-art technology is a lucrative target for
intruders. Security should not stop at the system surface, but also consider data being passed in the
system by buses, in memory, and in processor registers or drivers.

4.4.4.5 Spoofing and Phishing

Spoofing, meaning masquerading as a valid entity, and Phishing, stealing valid user credentials,
mainly affect the internet connection of the system, but might also affect authorization mechanisms.

4.4.4.6 Tampering with the System Configuration

Each and every unauthorized entity must be prohibited from changing the system configuration.
Changing the configuration could change the functionality from what was specified by the system
integrator. This is hard to achieve, since it requires a sound specification of both the software and the
hardware. Any unauthorized change must be detected and prevented from changing any computation.

Page 66 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.4.4.7 Tampering with DATA AT REST

Data can be stored on the system. Some of this data, whether its system data or user data containing
sensitive information, must be kept secrete. Encryption can be used, but requires a secret key to be
stored in the system.

4.4.4.8 Privilege Escalation

Given there already is a set of privileges designed in the system and these are assigned to roles, such
as “root” user, each role must be prevented from acquiring any permission it was not designed to
have.

4.4.5 Countermeasures

A core responsibility of the JamaicaAMS framework is to guard the system from attacks through
malicious code by ensuring that only code of known providence can run on the system. The frame-
work provides a walled garden for running such code. The assumption is that such authorized code
is not malicious. Thus, this is the starting point, for targeting Section[4.4.3.3] Section4.4.4.3.1|for all
vulnerabilities as in Section

4.4.5.1 Managed Programming Language

By employing a managed programming language, here the Java programming language with realtime
extensions, a large class of errors that can be made with unmanaged languages, such as C or C++,
are prevented by design. This reduces the possibility of erroneous code leading to malfunction,
dysfunction, or providing new attack vectors. Most prominently all attacks by pointer manipulation
or stack overflows are prohibited.

4.4.5.2 Managed Runtime Environment

An intrinsic feature of a managed language is executed with a well-defined runtime environment.
When combined with an interpreter, this runtime environment is often referred to as a Virtual Ma-
chine providing virtual abstraction of the the system to an application. In case of the JamaicaVM
virtual machine, it provides additional means to guard the underlying system. This targets directly

Section4.4.4.3.1

4.4.5.3 Commonly Used Programming Language

While the implementation of executing byte code is unique in JamaicaVM, the base security mecha-
nisms are not. These are shared by most Java virtual machines and have both a long service history
and are under observation of a huge user base. This helps both help minimize defects and to provide
a small time window from vulnerabilities being detected to being closed.

24 March 2025 Version 1.2.1 Page 67

JamaicaAMS User Documentation

4.4.5.4 Java Language Features

The next barrier is an architectural feature of the Java programming language. All functionality is
ordered in well-defined, standardized APIs. Specification, documentation and testing of these APIs
is supported intrinsically. There is a lot of tools for code analysis to be applied.

4.4.5.5 Service History

JamaicaAMS and JamaicaVM use the security APIs of Java, in particular, the OpenJDK implemen-
tations. This means that JamaicaAMS benefits from the service history of OpenJDK. These APIs
are used across the internet and are challenged daily. Any failures are addressed immediately by the
OpenJDK security team, giving the user an extra level of oversight.

4.4.5.6 API Security

All APIs accessing sensitive functionality, whether belonging to the core VM or the JamaicaAMS
extension, are and user APIs providing hardware dependent access to sensitive functionality must
and can easily be protected against unauthorized access by the concept of Permissions. More details
on permissions can be found in the documentation that comes with JamaicaAMS.

4.4.5.7 Intermediate Summary

These mechanisms alone already provide a certain level of security and robustness to the system,
when carefully applied. The attack vectors, as described in Section d.4.2.1 Section 4.4.2.2] Sec-
tion [4.4.2.3] and Section 4.4.4.8] are covered and closed to completeness on Application Level as in
Section4.4.3.3|not in the System as a whole, compare Table 4.2}

Table 4.2: Coverage Matrix |

=
S
Q ‘=
L <
I E
3| 8| & o0 | &
815 | 2| S || E e
S| = S| E| 5| |
T S| 8| alE€| &2
218|522z |2E|& &
MAA MR | v | B | A | &
Hardware Level X | X | X | X | X | X | X|X
Firmware Level X | X | X | X | X | X | X|KX
ApplicationLevel | vV |V [V | X | X | |/ | X

4.4.5.8 Application Robustness

JamaicaAMS additionally provides separation between single Applications to guarantee a fair distri-
bution of the system resources, but this is more of a robustnees feature.

Page 68 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.4.5.9 Validity of Application Code

JamaicaAMS additionally provides mechanism to verify at runtime, that the executed App was au-
thorized to run on the system. This provides an additional level of security. At the same time, this
mechanism guarantees, that the application, being once admitted to the system cannot be changed.

4.4.5.10 Environment

So far, a safe runtime environment as in Figure has been discussed. This is good, but does not
cover all security requirements. Issues at the level of hardware and OS are important as well.

System

0s

%_ //ﬁ

Software
attacks
(bugs,

05 level attacks error,

(OS bugs, Runtime \ malicious

misconfiguration) code)

o %

level End User
attacks

(HW
bugs,
physical
attacks)
(out of
scope) %

Internet Connector CAN bus

/

Figure 4.7: Safe Runtime and Environment

4.4.5.10.1 Hardware Measures Measures to secure the Hardware against the common attack
scenarios go beyond the scope of what JamaicaAMS can do alone. Suffice is it to say that they must
be considered in the system architecture for running JamaicaAMS. See reduced scope in Table §.3]

4.4.5.10.2 OS Measures Likewise, measures to secure the OS against the common attack sce-
narios also go beyond the scope of what JamaicaAMS can do alone. Again, this must be part of the
complete architecturaly design of a system using JamaicaAMS. See reduced scope in Table [4.3]

24 March 2025 Version 1.2.1 Page 69

JamaicaAMS User Documentation

Table 4.3: Coverage Matrix 11

Hardware Level
Firmware Level
Application Level

\| @ @| Denial of Service
\| @ @| Direct Access

\| @ @ Backdoor

& | | %| Tampering
| @| @| Privilege Escalation|

> | @ @ Eavesdropping

> | @ @| Spoofing
> | @| @ Phising

4.4.5.11 Initialization

For the initialization of the System, a pristine system state is assumed at power on. This is depicted
as the System’s “[0]” component in Figure[d.7] Since the runtime environment has been shown to be
a safe sandbox in Section [4.4.5.2] and related sections, for complete security one needs to provide a
link from the pristine state to the running runtime environment, including a verification of the runtime

environment. This links tightly to Section #.4.4.6|and Section

4.4.5.11.1 Secure Boot To maintain a correct (validated, trusted) system state after starting in the
pristine state, the system requires a secure boot process. The extend of this needs to be discussed,
since it might include a verification of the hardware. For doing so, the secure boot mechanism
requires an Per Device Entity of Trust. The secure boot process must further ensure the integrity of
all static data in the system. It cannot verify the integrity of dynamic data. The requirements can, for
example, be met by hashing the hardware and data items in question and storing the hash in a Secure
Location.

4.4.5.11.2 Consequence Leaving the open issues from Section{4.4.5.10.1{and Section4.4.5.10.2

aside, assuming dynamic code only in the Runtime Environment the system is trusted as in Table 4.4}

Table 4.4: Coverage Matrix 111

=
o i
2 =
> o0 =
52| 2 3
2l el & eo | [
S Q o (=]
@] c | <« & en | .=)
e | = g | E| 5| 80| 0
T EI8l2a|lE€|&|2|E
ol 2| L =) gl =1].92
< O | .= < o < = =
M AlA MR |wvn |BE|A | &
Hardware Level ® &6 &6 6 & = 0o | o
Firmware Level { BN BN BN NN NECHN BN J
ApplicationLevel | vV |V |V | X | X | |/ | X

Page 70 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

4.4.6 DATA AT REST protection

The open issue in the “Tampering” column of Table 4.4 is the storage of data accessed, created,
modified, and deleted during system runtime. This data might or might not be persistently stored
between power cycles. However, it cannot be statically verified.

As for Application Data, it might be sufficient to guard it by separation, so that no other Application
is able to access it. This is already done by JamaicaAMS. If further security is required, the App
could bring its own encryption mechanism, taking into account, that this itself is easily attackable.
This level of security is sufficient for sensitive user data, though.

Thinking at the System Level, DATA AT REST includes any part of the system that can dynamically
be changed, hence updates to the Software, the Runtime, or the Firmware. To reduce the attack
potential of these mechanisms, the mechanism, e.g., for doing a firmware update, must be strong and
robust. The system (pristine state) must have verified the mechanism and the update package must
be trusted. This links back to Section 4.4.5.11.1] especially the Per-Device Entity of Trust.

4.4.7 DATA AT MOTION protection

The same applies to data at motion, assuming common technologies like SSL/TLS to be understood,
applicable and strong, both themselves and in their implementation on the system dependent network
stack. Given the link to the trust anchor is guaranteed, the mechanisms and credentials needed to
close the remaining gap as in Table[4.5|can be devised, Figure 4.8

Table 4.5: Coverage Matrix IV

=
o 2
2 3
2| @ =
b5 »n | .5 Q
Q o, 72]
| 28| & on | K
Sl < |2 2|S |8 w
S|SB 2 |E & 2 =
2| B|E|z 2|E |22
B =
MAl A M |vn |H|& | &~
Hardware Level o & &6 6 & X o o
Firmware Level o & &6 6 & X o o
ApplicationLevel |V |V |V | X | X | X |/ | X

4.4.8 Conclusion

JamaicaAMS can provide the necessary system security from the boot loader up into the cloud. This
includes all code that runs in JamaicaAMS and all connections to the internet. To finish the picture,
JamaicaAMS needs support from the hardware and OS. The loader must be part of the secure boot
system and security can be enhanced by providing secure keys for identification and local encryption.
For this reason, close collaboration with the system architect is necessary for ensuring full security.

24 March 2025 Version 1.2.1 Page 71

JamaicaAMS User Documentation

—}——Put out of scope.

OS level attacks
(OS bugs,
misconfiguration)

}Put out of scope—]

HW
level

attacks
(HW
bugs,
physical
attacks)
{out of
scope)

System

0s

Runtime

B
N

/

/

\
\

\

/

et

Software
attacks
(bugs,

error,
malicious
code)

"

End User

Internet

Assume network stack security

3\
Assume CAN stack secure

Assume driver stack secure

Connector

CAN bus

Figure 4.8: Final Picture

Page 72

Version 1.2.1

24 March 2025

Chapter 5

OSGi Framework and Bundles

5.1 Framework Layers

OSGi offers a software layer, running on top of a Java platform, that supports the design and im-
plementation of modular systems. It does that by specifying a secure infrastructure that enables the
distribution, interoperability and remote management of application- and service components, called
bundles and sometimes also referred as packages.

The central part of the specification is the framework, that defines a model to manage the lifecycle
of the bundles, also including a registry, that exposes functionalities made available as services to be
imported and exported by the bundles, and an execution environment.

Life Cycle é
<

Execution Environment

Native Operating System

Figure 5.1: OSGi Framework: Layers Overview

Source: https://www.osgi.org/developer/architecture/layering—osgi/

73

https://www.osgi.org/developer/architecture/layering-osgi/

JamaicaAMS User Documentation

5.2 Bundle Lifecycle

The Lifecycle Layer provides an API for controlling the different phases of the bundle operations.

install update
F refresh

INSTALLED STARTING
7'y
update
resolve refresh start
v v
uninstall [RESOLVED [ACTIVE J stop
uninstall stop
UNINSTALLED J STOPPING

Figure 5.2: Bundle’s lifecycle

Figure [5.2] shows the states that a bundle can experience in a lifecycle, as well as the possible transi-
tions it could make to other states. Those can be summarized as follows:

* Installed: The bundle was successfully installed.

* Resolved: This state evaluates if the bundle is ready (complete), by checking things like the
Java version, if the imported packages are available etc.

» Starting: This is a transition state in the lifecycle; in this state, the method that activates and
starts the bundle is called.

» Active: In this state, the bundle has been successfully validated and is running.

* Stopping: Another transition state; the method that stops the bundle is being executed and the
bundle is being stopped.

¢ Uninstalled: The bundle is uninstalled and cannot be induced into another state.

5.3 Service Orientation

The service layer of the Framework rules the way the bundles dynamically connect and collaborate,
through a process known as “publish-find-bind”.

The concept of service in the framework’s context involves the following aspects:

Page 74 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

Specification: An interface that specifies the public methods.

* Implementation: A Java class that implements the methods specified in the interface.

Registry: Where the services are included and made available to other bundles.

Customers: The bundles that make use of a given service.

5.4 Controlling the Bundles

The control of the bundles’ lifecycle as well as other functionalities can be done through administra-
tion consoles or via command line, depending on the implementation. This way, any bundle can be
dynamically installed or uninstalled without the application having to be stopped or restarted. Also
information about active services, the listing of imports and exports of each bundle and the metadata
contained in the headers are shown this way.

As mentioned in Section[2.3.3] JamaicaAMS provides the Apache Felix Gogo shell as an auto-deploy
bundle. The command “1b” lists the bundles and their present states, as seen below.

g! 1b
START LEVEL 3

ID|State | Level | Name

OJActive 0|System Bundle (0.0.0)1]0.0.0

1|Active 1|JamaicaAMS Configuration Admin (1.2.1)]1.2.1

2 |Active 1|Apache Felix Configuration Json (1.0.6)]1.0.6

3|Active 1|Apache Felix Configurator Service (1.0.14)(1.0.14

4 |Active 1|Apache Felix Converter (1.0.18)[1.0.18

5|Active 1|Apache Felix Log Service (1.2.4)]1.2.4

6|Active 1|Apache Sling Commons Johnzon Wrapper Library (1.2.6)]1.2.6

\
|
\
\
\
\
\
7|Active | llorg.osgi:org.osgi.util.function (1.1.0.201802012106)1.1.0.201802012106
|
\
\
\
\
\

8 |Active 1|JamaicaAMS 0OSGi Log Writer (1.2.1)]1.2.1
9|Resolved 3|JamaicaAMS Security Provider (1.2.1)[1.2.1
10 |Active 2|JamaicaAMS Policy File Reader (1.2.1)]1.2.1
11|Active 3|Apache Felix Gogo Command (1.1.2)]1.1.2
12 |Active 3|Apache Felix Gogo Runtime (1.1.4)]1.1.4

13|Active 3|Apache Felix Gogo Shell (1.1.4)]1.1.4

g!

5.5 Enhanced Life Cycle Layer with Forced Thread Termination

JamaicaAMS uses OSGi Life Cycle Management that provides an API to control life cycle operations
of bundles. This means that bundles may be installed, started, updated, stopped, and uninstalled
during the execution of the framework. This is a key feature for remote software management in
JamaicaAMS.

In a conventional OSGi implementation, it is the programmer’s responsibility to ensure that all
threads spawned in the bundle are terminated, when a bundle is stopped. This can make the entire
system unstable, when a bundle has an infinite loop or blocks an I/O stream. In particular, applica-
tions that periodically acquire or transfer data, such as Internet of Things (IoT) applications, must be
carefully written and tested. Not terminated threads may occupy limited system resources, cause the
system to become unresponsive and ultimately the whole system to fail.

24 March 2025 Version 1.2.1 Page 75

JamaicaAMS User Documentation

JamaicaAMS provides enhanced capability of terminating threads spawned in a bundle. This en-
hances, in most cases, its chances to terminate uncooperative and faulty bundles which do not termi-
nate quickly when stopped.

Note that...

Threads with non-terminating finally blocks are not guaranteed to be terminated. More details can be found in
the Realtime Java Standard [8]].

This capability is provided using features from the standard for Realtime Java. RTSJ [8] provides
two mechanisms for asynchronous control flow, a general transfer mechanism called Asynchronous
Transfer of Control (ATC), which provides a means for stopping some calculation prematurely, and
an abort mechanism to safely terminate any task called Asynchronous Task Termination (ATT).
Whereas ATC provides a general transfer mechanism for code declared to be interruptible, ATT
is designed to safely terminate code that is not explicitly programmed for being interrupted asyn-
chronously. Compared to ATC, that relies on the programmer to declare the section of code for
termination and handle the resource cleanup, ATT handles these for programmers. It enables ending
computation more generally and always results in task termination.

By taking advantage of ATT, JamaicaAMS provides a more robust life cycle management than con-
ventional OSGi. Bundle termination works more like process termination in that any bundle can be
terminated at any time. This is an essential feature for robustness and remote bundle management.

Page 76 Version 1.2.1 24 March 2025

Chapter 6

How to write a Bundle with Eclipse

This section describes how to write an OSGi bundle for JamaicaAMS with the Eclipse IDE.

6.1 Prerequisites

The steps described in this section assume the following knowledge:

General experience with a Java Runtime Environment

General experience in writing applications in the Java programming language
* Basic understanding of the OSGi framework, especially of the bundle’s interface and lifecycle

* General experience with the Eclipse IDE [11]]
The steps described in this section require the following setup to be present:

* An up-to-date version of the Eclipse IDE from [[10]. The required minimum version is 3.6, but
the latest version is recommended.

6.2 Using PDE

If the Plug-In Development Environment (PDE) [12] is not contained in your Eclipse distribution,
it can be obtained using the Eclipse Update manager, by choosing Menu — Help — Install New
Software

6.2.1 Create a new Plug-In Project

1. Create a new Plug-in project by navigating to File — New — Project. In the New Project
wizard choose Plug-In Development — Plug-in Project

77

JamaicaAMS User Documentation

2. In the New Plug-in Project wizard on the Plug-in Project page enter He11loWor1ld into the
Project Name textfield.

Leave the Project Settings options unchanged.

Set the Target Platform options to match “This plug-in is targeted to run with: an OSGi
framework: standard”.

Proceed by clicking the [Next >] button.
3. On the Content page leave the Properties options unchanged. Make sure that in the Op-

tions section, the Generate an activator, a Java class that controls the plug-in’s life cycle
checkbox is checked.

Proceed by clicking the [Next >] button.

4. On the Templates page you can see a selection of project templates.
Choose Hello OSGi Bundle for now.
Confirm by clicking the [Next >] button.

5. The template Basic OSGi Bundle will let you choose a message to be displayed on start and
one on stop respectively. Freely choose any or keep with the defaults.

6. End this procedure by clicking the [Finish] button. At this point, Eclipse may suggest switch-
ing to the Plug-in Development Perspective because this is the default for Plug-in Projects.
Please do so.

6.2.2 Make Yourself Familiar with the UI

Verify that you have successfully finished the first stage by finding the Hel1loWor1ld project with
src and a Manifest as META-INF /MANIFEST.MF in the Workbench’s Packages / Package Ex-
plorer View.

If you never have used the Plug-in Development Perspective before, it might be a good moment
to make yourself familiar with it by, e.g., having a look how META-INF/MANIFEST . MF is repre-
sented.

6.2.3 Implement the Functionality

There is literally nothing that needs to be done. See how src/helloworld/Activator. java
implements BundleActivator with the input you chose in the wizard.

6.2.4 Run the Bundle on the Integrated Framework

As a next step you might want to run the newly created bundle. You can run it in the Equinox OSGi
framework, which is a fundamental part of every Eclipse installation.

Page 78 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

1. Select the HelloWorld project that contains your OSGi bundle.

2. Choose Run — Run Configurations.... This opens the Run Configurations dialog.

3. Create a new OSGi Framework configuration.

4. On the Bundles tab, please ensure that Equinox is set as runtime framework and select the
following bundles:

For Eclipse 3.6 and 3.7 users:

e HelloWorld

* org.eclipse.osgi

For Eclipse 4.x users:

HelloWorld

org.

org.

org

org.

org

eclipse.osgi

eclipse.equinox.console

.apache.felix.gogo.command

apache.felix.gogo.runtime

.apache.felix.gogo.shell

5. On the Settings tab, enable the Clear the configuration area before launching checkbox.

6. Now click the [Apply] button to save the configuration and then press Run to launch an
Equinox instance with the selected bundles. The Console View will show you the expected
output of the Activator class and the OSGi shell.

Since you have started a regular OSGi framework, you can start and stop your bundle by using the
commands start <bundle-id> and stop <bundle-id>. Use the help command to get a
list of the most important OSGi commands.

6.2.5 Deployment

As a next step you might want to deploy your bundle to a target system. To obtaina Java Archive
(JAR) file for your bundle, in order to install it into any standard OSGi framework, take the follow-

ing steps:

1. Select the HelloWorld project in the Package Explorer View.

2. Go to File — Export....

3. In the Export wizard, on the Select page choose Plug-in Development — Deployable plug-
ins and fragments.

24 March 2025

Version 1.2.1 Page 79

JamaicaAMS User Documentation

4. Proceed by clicking the [Next >] button

5. On the Deployable plug-ins and fragments page, in the Destination tab select the Directory
option and determine the place where to put the bundle JAR by editing the textfield.

Shortcut Hint:

* By choosing the Bundle Directory of an OSGi framework here, the framework will use the bundle on
next start.

o If the framework has a file install mechanism activated, you can use this option or the Install into host
option to install the bundle on-the-fly.

6. Click the [Finish] button to create the bundle JAR file.

6.3 Using M2E

Most Eclipse IDE downloads already include support for the Maven build system M2E. To check,
use Menu — Help — About and check if you can see the Maven logo (with the M2E) sign. If
Maven support is not yet installed, the following description can be used to install it.

Select Menu — Help — Install New Software menu entry.

6.3.1 Create a new Maven Project

TBD: Add how to create a maven project.

6.3.2 Importing the Examples into Eclipse

The example bundles contained in the JamaicaAMS distribution are Maven Projects. To import these
correctly into Eclipse, the following steps have to be taken:

» Extract the example bundle source (zip file)

* In Eclipse, proceed with Select — File — Import — Maven — Existing Maven Projects

(see Figure[6.1).

* In the following window, select Browse and navigate to the extracted source folder, clicking
the [OK] button. Please note that the pom. xm1 will be automatically selected.

* Click the [Finish] button and the example bundle will be imported as a Maven Project into
Eclipse

After the successful import, the project can be modified.

Page 80 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

Import o x |

Select

Import Existing Maven Projects H

Select an import wizard!
type filter text
= Git
(= Gradle
(= Install
(= Maven

%, Check out Maven Projects from SCM

¥ Existing Maven Projects

13, Install or deploy an artifact to a Maven repository

W Materialize Maven Projects from SCM

= Namnh
e .

Figure 6.1: Importing the examples in Eclipse

6.3.3 How to build the Examples

TBD: Add how to build the example using M2E UL

The sources for the examples are included in JamaicaAMS. To be able to build the examples, for
instance after some changes are made to the source, Maven has to be installed on the system. The
required Maven version is 3.6.0. It is also required to have at least Java 8 and an internet connection.

To build the examples, run:

> mvn clean package

The bundles can then be found in the target directory created by Maven.

6.3.4 Implement the Functionality

TBD: Add how to implement the HelloWorld.

6.3.5 Run the Bundle on the Integrated Framework

TBD: Refer tol6.2.4

6.3.6 Deployment

TBD: Add how to deploy a bundle using M2E.

24 March 2025 Version 1.2.1 Page 81

JamaicaAMS User Documentation

Page 82 Version 1.2.1 24 March 2025

Chapter 7

Debugging Bundles with Eclipse

This section describes how to debug an OSGi bundle with the Eclipse IDE. Besides the traditional
debug facilities in Eclipse for debugging on the local host machine, here the focus is especially set
on remote debugging. The latter is particularly required when a bundle is executed and debugged
directly on a target platform running JamaicaAMS.

7.1 Prerequisites

The steps described in this section assume the following knowledge:

General experience with a Java Runtime Environment

General experience in debugging applications in the Java Programming Language
* Basic understanding of the OSGi framework, especially the Bundle interface and lifecycle

* General experience with the Eclipse IDE, especially how to debug applications using Eclipse
IDE

The steps described in this document require the following setup:

* The minimum required Eclipse IDE is version 3.6, but the latest version is recommended.
* Java Virtual Machine (JVM) V5.0 or later must be used, such as JamaicaVM or OpenJDK 8.

¢ A JamaicaAMS release

7.2 Background

Debugging an OSGi bundle can be accomplished in several different ways for different scenarios,
e.g.

83

JamaicaAMS User Documentation

* abundle is deployed and debugged locally in the OSGi environment hosted by the Eclipse IDE;

* a bundle is running in a custom target OSGi environment apart from Eclipse (e.g. Ja-
maicaAMS) and is debugged remotely;

¢ the target OSGi framework may run on the local or on a remote host

However, in either case the Eclipse IDE serves as an interface for debugging, which may connect to
an integrated or a separate OSGi platform. In the case of JamaicaAMS, the Debuggee, i.e. the bundle
to be debugged, is always executed within a dedicated JamaicaAMS framework running on a local or
a remote host. In both cases, Eclipse IDE connects remotely to the target JamaicaAMS framework.

In order to facilitate debugging activities, the JamaicaAMS distribution provides a binary application
that has been built by Jamaica Builder with JVMTTI agent enabled (JVMTI E[) The application is
located in:

e <JamaicaAMS>/setup/bin/jamst

The following example shows how to remotely debug a JamaicaAMS built-in bundle

(<JamaicaAMS>/example/primes—example—<version>. jar) using jamst and the
Eclipse IDE.

7.3 Setup of the Debugging Environment

To debug the “primes-example” bundle, setup the following environments:

* Create a Plug-in Project from the extracted bundle JAR that is located at <path to
JamaicaAMS>/example/primes—-example—-<version>-sources. jar and set a
breakpoint (e.g., somewhere in the PrimesExampleActivator.start () method). Fig-
ure shows an example of a breakpoint that stops the execution before checking whether a
number is prime or not.

* Copythe <path to JamaicaAMS>/example/primes-example-<version>.jar
into the folder <path to JamaicaAMS>/setup/bundle. 3, in order to auto start the
bundle. You can also manually export the “primes-example” project as a bundle and install the
bundle when JamaicaAMS runs.

7.3.1 Start the Debug Server

Type the following command to start jamst and you will see the message below it.
> ./bin/Jjamst
Listening for transport dt_socket at address: 4000

This shows that the debug server (jamst) listens for a socket connection request on the pre-defined
port 4000 and will be suspended until the debug client connects.

'https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

Page 84 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

Package Explorer 83 PrimesFinder java &2 PrimesActivatorjava
1% Package Expl = 0 der i
5 < [222 public void run()
¥ 22 primes

w (B srcfmainfjava

int 1 = 2;

int n = 0;

long time = System.currentTimeMillis();
wh%'l.e (true)

~ i com.aicas,jamaica.iot.bu

» PrimesActivatorjava
» =\ |RE System Library [jdl1.8.(
+ =\ Referenced Libraries

if (isInterrupted())
{

// The Activator has interrupted us, so terminate.
break;

» s org.osgicore-6.0.0.jar - | if (isPrime(1))

- [= src -
i . n;
& main if (n % REPORT_INCREMENT == 0)
[porm xml {

Llong newTime = System.currentTimeMi1lis(];
System.out.println("Computed " + REPORT_INCREMENT + " primes 1n " +
(newTime - time) + "ms!");

=] README txt

time = newT1ime;

Figure 7.1: Setup the Java project for Computing Prime numbers

7.3.2 Start the Debug Client

In Eclipse, right click the Class PrimesFinder. java that contains a breakpoint and then select
the Debug as option, followed by the Debug Configurations... option. In the [Debug Configura-
tions] dialog on the Connect tab, choose the following options (depicted in Figure [7.2).

e ConnectionType: Standard (Socket Attach)
e Host: 1localhost
e Port: 4000

¢ Allow termination of remote VM

& Package Explorer (MR I e L]

-| Create, manage, and run configurations ﬁ'
o Attach to a Java virtual machine accepting debug connections
v =2 primes
w [# src/mainfjav
* i com.aica (N = Name: | PrimesFinder
> o Prme type filter text &f Connect % Source | [F] Common
b m) JRE System JuUnit Plug-in Test IFTEEER!
~ m), Referenced & Jython run primes Browse. ..
} s org.osgi. & Jython unittest -
p—— & Launch Group Conneaction Type:
= main I Launch Group (Deg standard (Secket Attach) -
[wl pom.xml m2 Maven Build
2 README .txt 05Gi Framework | | -CTnection Properties:
EAryDev Djange Host: localhost
£a.pyDev Google App
o bython Fun Port: | 4000 ;
& python unittest [+ Allow termination of remote Wi
~ I Remote Java Applic
JujTask Context Test —— Apply
Filter matched 26 of 26 it b
&
@ Close Debug .

Figure 7.2: Debug Configurations for debugging with jamst

Click the [Debug] button and you can debug the “primes-example” bundle as usual.

24 March 2025 Version 1.2.1 Page 85

JamaicaAMS User Documentation

Page 86 Version 1.2.1 24 March 2025

Chapter 8

JamaicaAMS Runtime Reference

8.1 JamaicaAMS Properties

In the JamaicaAMS setup/conf directory there are three configuration files:
config.properties, system.properties and logging.properties. The
config.properties is typically used to configure the behavior of the framework and the
bundles; the system.properties is purely a convenience, to avoid having to set complicated
system properties via command line. JamaicaAMS only directly loads the configuration properties.

When JamaicaAMS starts, its launcher is activated and configures the system by passing the prop-
erties loaded from system.properties to the framework. Though it is allowed to specify du-
plicated properties in both configuration files, the configuration properties will override the system
properties for duplicated cases.

Note that...

A complete description of the OSGi launching properties implemented by JamaicaAMS can be found in section
4.2.2 of the OSGi Core Release 8 specification [6].

8.1.1 Config Properties
This section presents the properties listed in the config.properties file.

* org.osgi.framework.system.packages
To override the packages the framework exports by default from the classpath, this variable
must be set.

* org.osgi.framework.system.packages.extra

To append packages to the default set of exported system packages, this value must be set.

* org.osgi.framework.bootdelegation

This property makes specified packages from the classpath available to all bundles and should
be avoided. However, if such a configuration is to be made, an example of values listed could
be sun.* com.sun.* jdk.*.

87

JamaicaAMS User Documentation

* jamaica-ams.bootdelegation.implicit
According to the boolean value of this property, JamaicaAMS tries to infer when to implicitly
boot delegate to ease integration with external code. This feature is set to true by default.

* org.osgi.framework.storage

This property specifies the location of the bundle cache, which defaults to
jamaica-ams—cache in the current working directory ${user.dir}. If this value is
not absolute, then the $ { jamaica—-ams.cache.rootdir} will control how the absolute
location is calculated as in

org.osgi.framework.storage=${jamaica-ams.cache.rootdir}/jamaica-ams-cache.

* jamaica-ams.cache.rootdir
This property is used to convert a relative bundle cache location into an absolute one, by spec-
ifying the root to prepend to the relative cache path. The default for this property is the current
working directory $ {user.dir}.

* org.osgi.framework.storage.clean
This property controls whether the bundle cache is flushed the first time the framework is
initialized. Possible values are “none” and “onFirstInit”. The default value is “none”.

* jamaica-ams.cache.locking
This boolean property is used to enable/disable bundle cache locking. On JVMs that do not
support file channel locking, you may want to disable this feature. The default is enabled.

* jamaica-ams.cache.filelimit
The integer value of this property limits how many open files the bundle cache is allowed to

use. The default value is 0, which is unlimited.

* jamaica-ams.auto.deploy.action.1=install,start

* jamaica-ams.auto.deploy.action.2=install,start

* jamaica-ams.auto.deploy.action.3=install,start

The properties above determine which actions are performed when processing the auto-deploy

9 e

directory. It is a comma-delimited list of the values “install”, “start”, “update”, and “uninstall”.

An undefined or blank value is equivalent to disabling auto-deploy processing. The numerical
ending component is the targeted start level. Any number of these properties may be specified
for different start levels.

* jamaica-ams.auto.deploy.dir.3

This property specifies the directory to use as the bundle auto-deploy directory; the default is
bundle.n in the working directory. The numerical ending component is the target start level.
Any number of such properties may be specified for different start levels.

Page 88 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

* jamaica-ams.auto.install.3

This property is a space-delimited list of bundle URLSs to install when the framework starts.
The numerical ending component is the target start level. Any number of such properties may
be specified for different start levels.

* jamaica-ams.auto.start.3
This property is a space-delimited list of bundle URLSs to install and start when the framework
starts. The ending numerical component is the target start level. Any number of such properties
may be specified for different start levels.

* jamaica-ams.log.uncaught.exceptions.bundle.threads
This property suppresses logging of uncaught exceptions in threads belonging to bundles. The
default is false.

* org.osgi.framework.startlevel.beginning=3

This property sets the initial start level of the framework upon startup.

* jamaica-ams.startlevel.bundle=3

This property sets the start level of newly installed bundles.

* jamaica-ams.service.urlhandlers
JamaicaAMS installs a stream and content handler factories by default. The value of this
property should be actively set to false, in order not to install them.

* jamaica-ams.shutdown.hook
By default, JamaicaAMS’s launcher registers a shutdown hook to cleanly stop the framework.
The value of this property should be actively set to false, in order to disable this hook.

* jamaica-ams.shutdown.hook.timeout

This property sets the the maximum number of milliseconds the shutdown hook has to wait
until the Framework has completely stopped. A value of 0 means the shutdown hook will wait
indefinitely. The default is 3000.

* org.osgi.framework.security=osgi

This property enables security.

* jamaica-ams.security.policy=./conf/osgi.all.policy
This property sets the path to the JamaicaAMS security policy files and should be adapted as
needed.

* jamaica-ams.log.level=2

* jamaica-ams.BundleLogger.level=2

These properties are used to set the log levels. The JamaicaAMS logging levels match those
specified in the OSGi Log Service (i.e., 1 = error, 2 = warning, 3 = information, and 4 = debug).

24 March 2025 Version 1.2.1 Page 89

JamaicaAMS User Documentation

* java.util.logging.config.file=./conf/logging.properties
This property specifies the configuration file for Java Logging API.

* org.apache.felix.log.maxSize=100
This property sets the maximum size of entries in the log history. A value of -/ means the log
has no maximum size; a value of 0 means that no historical information is maintained.
 org.apache.felix.log.storeDebug=false

This property determines whether or not debug messages will be stored in the history.

8.1.2 System Properties

JamaicaAMS also has built-in system properties, listed in <path to
JamaicaAMS>/setup/conf/system.properties, as seen below:

* java.security.policy=./conf/all.policy

This property sets the path to the Java security policy files and should be adapted as needed.

8.1.3 Logger Properties
Note that...

The Log Services specification defines the methods and semantics of interfaces which bundle developers can use to
log entries and to retrieve log entries. Bundles can use the Log Service to log information for the Operator. Other
bundles, oriented toward management of the environment, can use the Log Reader Service to retrieve Log Entry
objects that were recorded recently or to receive Log Entry objects as they are logged by other bundles.

Source: The OSGi Alliance—OSGi Compendium

In JamaicaAMS, Log Service is used to expose event messages. There are two JamaicaAMS loggers,
with distinguished identifiers:

* jamaica-ams.log

* jamaica-ams.BundleLogger

They are used for the modules “framework” (i.e. the system bundle) and “bundle” (i.e., the bundles
except the system bundle), respectively.

Generally, log levels can be set to control the amount of logging performed, where a higher number
results in more logging. A log level of zero turns off the logging functionality completely.

The loggers are implemented using java.util.logging. It can be configured using the file specified in
java.util.logging.config.file.

Page 90 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

8.2 Budgets

Note that...

One distinguishing feature of JamaicaAMS in comparison to other OSGi frameworks is that resource budgets may
be imposed on the separate bundles.

The possibility to define budgets is a very important aspect, since all bundles are executed within the
same process and it becomes necessary to limit the resources used by each one of them. Otherwise,
a single misbehaving bundle could impact the performance of the system as a whole.

In order to impose budgets on a bundle, the bundle’s JAR file needs to contain an entry named
bundle.properties. This entry needs to be in Java property file format (see [4]).

Currently JamaicaAMS supports CPU, memory, and thread budgets. Budgeting the CPU time en-
sures that all bundles get a fair share of execution time. Budgeting the number of threads and the
memory usage ensures that no single bundle monopolizes these shared resources. In JamaicaAMS,
budgets are implemented through the following properties:

* budget.cpu It defines the CPU budget as a percentage of each period of 100 milliseconds.
Values for the budget.cpu property have the format number%, where number is an integer
between 0 and 100.

If a bundle exceeds its budget in a given period, the priority of all threads started by the bundle
is lowered to O for the remainder of the period. Priority O is a special priority that is lower than
all Java priorities. At the beginning of the next period, the original priorities are restored for
all threads of the bundle.

The effect of a priority being dropped to the lowest possible value is that the bundle’s threads
will only be scheduled to run if no other thread in the system is ready to be executed.

Example:

In the JamaicaAMS subdirectory example, the bundles “primes” and “primes-with-budgets”
display a sequence of prime numbers. For the variant “primes-with-budgets” however,
it is specified a cpu budget that the bundle is allowed to use. This is declared under
bundle.properties.

budget .cpu=5%

When running individually, each bundle will use full CPU time. However, CPU time will be
significantly divided when running different bundle combinations. For example,

— When running both the “primes” and “primes-with-budget” bundles, “primes” calculates
faster than “primes-with-budget” because it has no CPU budget, i.e. it uses full CPU time
by default.

— When running “primes” and “primes-lower-priority” at the same time, “primes” calcu-
lates prime numbers faster than “primes-lower-priority” because its thread priority is
higher than “primes-lower-priority”.

24 March 2025 Version 1.2.1 Page 91

JamaicaAMS User Documentation

— When running bundles “primes-with-budget” and “primes-lower-priority” at the same
time, “primes-lower-priority” calculates primes faster than “primes-with-budget” because
when the CPU budget is exceeded, the priority of “primes-with-budget” is reduced to the
lowest possible value and is lower than the priority of “primes-lower-priority”.

By running both bundles, the user can perceive the impact of imposing such restrictions.

* budget.memory JamaicaAMS allocates a fixed-sized Java heap at startup (typically between
64 MB and 256 MB). All memory allocations take place in this heap, that is shared by all
bundles.

Memory budgets ensure that no single bundle uses too much of the shared heap. Otherwise,
starting additional bundles might not be possible, or else already running bundles may cease to
operate properly due to an out-of-memory situation.

JamaicaAMS permits memory budgets to be defined in bytes. Values for the budget.memory
property have the format number, where number is a non-negative integer denoting the memory
budget in bytes.

If a bundle exceeds its memory budget, any subsequent allocation via “new” will result in an
OutOfMemoryError.

Example: In the JamaicaAMS subdirectory example, the bundles “memory-consumption-
example” and “memory-consumption-budget-example” create 10 arrays of bytes respectively
and each array consumes / MB of Java heap. The size of free memory is printed after ev-
ery successful array allocation. In the “memory-consumption-budget-example”, the memory
budget specified in the bundle.properties permits the bundle to use up to 5 MB of Java
heap.

budget .memory = 5242880

Running the “memory-consumption-example”, all 10 arrays should be allocated successfully.
While running the “memory-consumption-budget-example”, the memory budget will be ex-
ceeded by attempting to allocate the fifth array and an Out OfMemoryError will be thrown.

Start eating the memory.

Amount of free memory : 38946080

Amount of free memory : 37896000

Amount of free memory : 36846336

Amount of free memory : 35796672

[Mon Feb 19 13:59:37 CET 2024] ERROR: Bundle com.aicas.jamaica.
ams.bundle.example.memory—-consumption-budget-example [15]
ThreadGroup is limited to 5242880 bytes memory, used 4203136
bytes! The current allocation exceeds the budget limit and
cannot be allowed.

java.lang.OutOfMemoryError

Page 92 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

* budget.threads It defines the thread budget as number of concurrently active threads. The
format of this property is budget.threads = <n>.

A value larger than 0 will enforce the number of active threads to be limited by this value. Any
value smaller than 0 is invalid.

If a bundle reaches its thread budget, any subsequent creation of a new thread will result in an
exception.

Example: In the JamaicaAMS subdirectory example, the bundles “thread-spawning-
example” and “thread-spawning-budget-example” each start 15 threads and keep them active
until interrupted. The threads budget is set to 10 in the “thread-spawning-budget-example”,
which allows the bundle to have at most 10 active threads.

budget.threads = 10

The “thread-spawning-example” should run successfully. However an error will occur when
running the “thread-spawning-budget-example”.

javax.realtime.enforce.ThreadlLimitError: ThreadGroup limit
exceeded: 10

A bundle may create an arbitrary number of instances of class java.lang.Thread, and
there is no limit on the number of calls to start () on these threads. However, the number of
threads that may be alive simultaneously is limited by this property. To be sure that a thread is
no longer alive, a call to Thread. join () is required. Before a call to Thread. join (),
the thread may have finished its Java execution, but it may still not have been released back to
the framework’s thread pool.

8.3 Thread Count

This section accounts for the threads that are created by JamaicaAMS. This information is useful for
configuring the overall thread number and for configuring thread numbers for individual bundles.

In JamaicaAMS, the overall thread number can be configured through the environment variable JA-
MAICA_AMS_NUM_THREADS: this sets the maximum allowed threads in the runtime. Bundle
thread numbers can be configured through the property budget.threads. There are in total 43 threads
when JamaicaAMS runs with the default bundles.

Below is a list of JamaicaAMS threads. Note that starter threads are created when JamaicaAMS starts
and do not terminate until it shuts down. To complete the information, this section also includes a
list of the Jamaica Virtual Machine main threads.

24 March 2025 Version 1.2.1 Page 93

JamaicaAMS User Documentation

JamaicaAMS Starter Threads

¢ Main Thread

To invoke the construction and the initialization of JamaicaAMS and to start the initialized
framework.

JamaicaAMS Framework Threads

* FrameworkWiring
To perform asynchronous package refreshes.

* StartLevel
To query and modify the start level information for the framework.

* FrameworkDispatchQueue

To update all listeners (e.g., Framework, bundle, synchronous, and service listeners) as-
sociated with a specified bundle, and to dispatch the events of the bundle to the event
listeners.

¢ FrameworkExecutorThread

To perform special framework operations (e.g. bundle termination) asynchronously in an
isolated and safe manner.

Administrative JamaicaVM Threads

* Finalizer

¢ MemReservationO (idle time GC)
» Reference Handler

* PosixEventThread (heap)
 SignalPumpThread

JamaicaVM Realtime Threads

» AbstractAsyncEventHandlerThread

8.3.1 Bundle Threads

Those contain all user threads that are created by the bundle. Note that user threads often have
a limited lifetime. The configurable thread numbers (JAMAICA_AMS_NUM_THREADS and
budget.threads) impose bounds on the number of threads that exist simultaneously.

In addition to the user threads, there is an administrative thread for each bundle, which only ex-
ists while the bundle is in active state. This thread is associated to the installed bundle. There is
a BundleThreadGroup per Bundle for managing its threads. There are in total 32 threads con-
structed for the default built-in bundles.

Page 94 Version 1.2.1 24 March 2025

JamaicaAMS User Documentation

JamaicaAMS Bundle Threads

* com.aicas.jamaica.ams.bundle.configuration-admin
Provides a service which allows for easy management of configuration data for config-
urable components. Threads CM Event Dispatcher and CM Configuration Update are
part of this package.

* com.aicas.jamaica.ams.bundle.osgi-log-writer
Uses the java.util.logging to output the log entries recorded by the logging service. The
java.util.logging runs on a seperated thread.

* com.aicas.jamaica.ams.bundle.policy-file-reader
Loads the policy file for the OSGi security layer.

* jakarta.json-api
API for Jakarta JSON processing.

* org.apache.felix.cm.json
Provides support for OSGi configurations specified in JSON documents.

* org.apache.felix.configurator

Provides an implementation of the OSGi Configurator Service Specification.

* org.apache.felix.gogo.command
Provides a set of basic commands.

 org.apache.felix.gogo.runtime
Provides the core command processing functionality.

* org.apache.felix.gogo.shell

Provides a simple textual user interface to interact with the command processor. Internally
it starts the shell on a separate thread, Gogo Shell. The Gogo Shell thread continues to
create threads job controller, pipe-gosh —login, and a thread pool, which incrementally
constructs 10 threads. Therefore, there are in total 13 threads constructed directly and
indirectly from the org.apache.felix.gogo.shell thread.

* org.apache.felix.log
Provides a set of log utilities. Thread FelixL.ogListener is part of this package.

* org.apache.felix.scr
Provides an implementation of the declarative services specification. Thread SCR Com-
ponent Actor is part of this package.

* org.eclipse.parsson
Provider for Jakarta JSON processing.

* org.osgi.service.component

API of the declarative services specification.
* org.osgi.util.converter

Provides a set of basic utilities.

24 March 2025 Version 1.2.1 Page 95

JamaicaAMS User Documentation

* org.osgi.util.function

Provides a set of basic utilities.

* org.osgi.util.promise

Provides a set of basic utilities.

Page 96

Version 1.2.1

24 March 2025

JamaicaAMS User Documentation

8.4 Usage of the Java Native Interface (JNI)

In general developers are discouraged from using the Java Native Interface (JNI). Nevertheless, the
usage of JNI allows them to use native code and easily interact with Java objects (e.g. get and set
field values, and invoke methods without many constraints).

On the one hand, with JNI it is possible to use the safety behavior of the Java language for the ability
to accomplish the tasks listed earlier; on the other hand, JNI provides powerful low-level access to
the machine resources (memory, I/O, and so on), but you need to be careful because you are working
without the safety net usually provided to Java developers.

JNT’s flexibility and power introduce the risk of programming practices that can lead to poor perfor-
mance, bugs, consume system heap and fail on a heap allocation.

For these reasons, developers must be careful about the code they include in their software and use
good practices to safeguard its integrity. Please note the additional information on best practices:

* A common JNI programming error is to call a JNI method and to proceed without checking for
exceptions once the call is complete. This can lead to buggy code and crashes. For this reason
it is important to return to the Java side in case of a pending exception. The pending exception
will then be raised as a regular Java exception.

* The memory allocated on the native side of JNI is not accounted for in the memory limits.

* Many JNI methods have a return value that indicates whether the call succeeded or not. A
common error, similar to not checking for exceptions, is to fail to check the return value and
for the code to proceed on the assumption that the call was successful.

» Native methods can create global references so that objects are not garbage collected until they
are no longer needed. Common errors are forgetting to delete global references that have been
created or losing track of them completely. Not freeing global references is an issue not only
because they keep the object itself alive but also because they keep all objects that can be
reached through the object alive. In some cases this can add up to a significant memory leak.

24 March 2025 Version 1.2.1 Page 97

JamaicaAMS User Documentation

Note: In its Core document for the Release 8, the OSGi Alliance advises developers about the use
of the Java Native Interface.

Considerations Using Native Libraries

There are some restrictions on loading native libraries due to the nature of class loaders. In order
to preserve namespace separation in class loaders, only one class loader can load a native library
as specified by an absolute path. Loading of a native library file by multiple class loaders (from
multiple bundles, for example) will result in a linkage error.

Care should be taken to use multiple libraries with the same file name but in a different directory in
the JAR. For example, foo/http.dll and bar/http.dll. The Framework must only use the first library
and ignore later defined libraries with the same name. In the example, only foo/http.dll will be
visible.

A native library is unloaded only when the class loader that loaded it has been garbage collected.
When a bundle is uninstalled or updated, any native libraries loaded by the bundle remain in
memory until the bundle’s class loader is garbage collected. The garbage collection will not happen
until all references to objects in the bundle have been garbage collected, and all bundles importing
packages from the updated or uninstalled bundle are refreshed. This implies that native libraries
loaded from the system class loader always remain in memory because the system class loader is
never garbage collected.

It is not uncommon that native code libraries have dependencies on other native code libraries.
This specification does not support these dependencies, it is assumed that native libraries delivered
in bundles should not rely on other native libraries.

Source: https://docs.osgi.org/download/r8/0osgi.core-8.0.0.pdf.

Page 98 Version 1.2.1 24 March 2025

https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf

Chapter 9

Information for Specific Targets

Generally all JamaicaVM target systems should be also feasible to run JamaicaAMS, and this chapter
aims at documenting information referring to specific platforms.

9.1 Linux

JamaicaAMS can be run on variant Linux distributions for variant target, e.g., Intel x86_64 architec-
ture, ARM architecture (v7 and v8), and RISC-V. The following section describes several configura-
tion issues which might need to be taken care of to run the JamaicaAMS.

9.1.1 Shared Libraries

Different libraries are required on different targets. In order to run JamaicaAMS, at least the following
shared libraries should exist in the library search paths.

e libm.so

libpthread.so

libdl.so

librt.so

libstdc++.s0

Some Board Support Packages (BSPs) might not have libstdc++.so integrated. In this
case, the 1ibstdc++.so has to be copied to the target file system where the library loader
can discover it. For example, if the libstdc++.so is copied in a folder <path to
JamaicaAMS>/setup/lib, the environment variable LD_LIBRARY_PATH should be set with
following command:

> export LD_LIBRARY_PATH=<path to JamaicaAMS>/setup/lib:$LD_LIBRARY_PATH

99

JamaicaAMS User Documentation

On VxWorks the dynamic library 1ibc.so must be renamed to 1ibc.so.1 and added to the
bin directory containing the executable binaries. This library is located inside the VxWorks Source
Build (VSB) project. When using elliptic curve cryptography the following additional libraries are
needed: 1ibcplusplus.so.l, libllvmcplus.so.1l and 1ibllvm.so.1l. They can also
be found inside the VSB project. For more information, see the Shared Library Location and Loading
at Run-time paragraph in the VxWorks Application Programmer’s Guide.

9.1.2 Random Number Generator

JamaicaAMS requires a random number generator been initialized on the target system. If the BSP
does not initialize the random number generator at boot time, it has to be done prior to starting
the JamaicaAMS. For example, on a Raspberry Pi, the application processor contains a Hardware
Random Number Generator. The BSP has been configured with the device (/dev/random and
/dev/hwrng) existing in the system. Therefore, no additional steps need to be done. For other
distribution or targets, please consult with the document of the specific distributions or the targets.

Page 100 Version 1.2.1 24 March 2025

Bibliography

[1] Apache Felix Gogo Shell. https://felix.apache.org/documentation/
subprojects/apache-felix—gogo.html.

[2] Introducing the Bndtools. https://bnd.bndtools.oraq.

[3] JamaicaVM 8.10 User Manual. https://www.aicas.com/download/manuals/
aicas—JamaicaVM-8.10-Manual .pdf.

[4] Java Properties File Format. https://www.aicas.com/jamaica/8.10/doc/
Jamaica_api/java/util/Properties.html#load—java.1io.Reader—-.

[5] JDK 8 PKCS#11 Reference Guide.

https://docs.oracle.com/Jjavase/8/docs/technotes/qguides/
security/pllguide.html.

[6] OSGi Core Release 8 Specification. https://docs.osgi.org/download/r8/osgi.
core—-8.0.0.pdf.

[7] PMD Information. https://pmd.github.io/.
[8] RTSJ Standards. https://www.aicas.com/wp/standards/rts/l
[9] SpotBugs Information. https://spotbugs.github.io/.
[10] The Eclipse Download page. https://www.eclipse.org/downloads/.
[11] The Eclipse project. https://www.eclipse.org/.

[12] The Plugin-in Development Environment (PDE) for Eclipse. https://www.eclipse.
org/pde/.

[13] Wikipedia site “Computer Security”.
https://en.wikipedia.org/w/index.php?title=Computer_securitvé&
01did=1171684823.

[14] Morrie Gasser. Building a Secure Computer System. Van Nostrand Reinhold Co., New York,
NY, USA, 1988.

[15] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine Specification,
Java SE 8 Edition. Pearson Education, 2014.

101

https://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
https://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
https://bnd.bndtools.org
https://www.aicas.com/download/manuals/aicas-JamaicaVM-8.10-Manual.pdf
https://www.aicas.com/download/manuals/aicas-JamaicaVM-8.10-Manual.pdf
https://www.aicas.com/jamaica/8.10/doc/jamaica_api/java/util/Properties.html#load-java.io.Reader-
https://www.aicas.com/jamaica/8.10/doc/jamaica_api/java/util/Properties.html#load-java.io.Reader-
https://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html
https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf
https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf
https://pmd.github.io/
https://www.aicas.com/wp/standards/rtsj/
https://spotbugs.github.io/
https://www.eclipse.org/downloads/
https://www.eclipse.org/
https://www.eclipse.org/pde/
https://www.eclipse.org/pde/
https://en.wikipedia.org/w/index.php?title=Computer_security&oldid=1171684823
https://en.wikipedia.org/w/index.php?title=Computer_security&oldid=1171684823

	JamaicaAMS Framework
	Getting Started
	System Requirements
	Installation
	Execution
	Launching
	Environment Variables
	Interaction
	Enhanced Interaction with the Advanced GoGo Shell (JLine)

	Exit Codes
	Example Bundles
	How to install a bundle
	How to query the bundles
	How to start and stop a bundle
	How to uninstall a bundle

	Tools and Components
	Development
	PMD and SpotBugs

	Deployment
	jarsigner

	Configuration
	OSGi Bundle Acceleration with JamaicaAMS
	Bundle Configuration
	Configurator
	Configuration Admin Service

	Security
	Foundations of Java Security
	Bytecode Verification
	Limitations

	Class Loaders
	Java Security Manager
	Permissions
	Policy
	Access Controlling

	Java Cryptography Architecture (JCA)
	Public/Private Key Pair
	Certificates and Chains

	Additional Java Security Frameworks
	Java Authentication and Authorization Service (JAAS)
	Java Secure Socket Extension (JSSE)
	Java Cryptography Extension (JCE)

	OSGi Security Mechanisms
	OSGi Class Loading
	OSGi Security Manager
	OSGi Security Challenges
	OSGi Permissions
	Bundle Protection Domain
	Conditional Permission Admin
	Differences from Java's Security Model

	Code Signing in OSGi
	Signed JAR File
	Authentication and Permissions

	Configuring Security for JamaicaAMS: A Step-by-Step Guide
	Initial Setting Up
	Generating Self-Signed Certificates
	Generating a Keystore with a Key Pair
	Generating a Self-Signed Certificate
	Importing the Self-Signed Certificate into a Truststore

	Signing a Bundle
	Configure JamaicaAMS to Trust the Signed Bundle
	Configure JamaicaAMS to Grant OSGi Global Permissions
	Configure JamaicaAMS to Grant OSGi Local Permissions
	Grant Local Permissions to a File Write Bundle
	Grant Local Permissions to a Host Resolving Bundle

	JamaicaAMS Security Protection
	Common Understanding of Computer Security
	Common Vulnerabilities and Attacks
	Backdoor
	Denial of Service (DoS)
	Direct Access
	Eavesdropping
	Spoofing
	Tampering
	Privilege Escalation
	Phishing

	Attack Levels
	Hardware Attacks
	Firmware Attacks
	Application Level Attacks

	Deriving Attack Scenarios
	Backdoors
	Forced System Breakdown by Signal Input (DoS)
	System Access
	Access by Code / API
	Access by Terminal / HMI
	Access by Network
	Access by Configuration

	Listening to DATA IN MOTION
	Data Send to or from the Internet
	Data Send over Other Connectors
	Data on the Display
	Data in the System

	Spoofing and Phishing
	Tampering with the System Configuration
	Tampering with DATA AT REST
	Privilege Escalation

	Countermeasures
	Managed Programming Language
	Managed Runtime Environment
	Commonly Used Programming Language
	Java Language Features
	Service History
	API Security
	Intermediate Summary
	Application Robustness
	Validity of Application Code
	Environment
	Hardware Measures
	OS Measures

	Initialization
	Secure Boot
	Consequence

	DATA AT REST protection
	DATA AT MOTION protection
	Conclusion

	OSGi Framework and Bundles
	Framework Layers
	Bundle Lifecycle
	Service Orientation
	Controlling the Bundles
	Enhanced Life Cycle Layer with Forced Thread Termination

	How to write a Bundle with Eclipse
	Prerequisites
	Using PDE
	Create a new Plug-In Project
	Make Yourself Familiar with the UI
	Implement the Functionality
	Run the Bundle on the Integrated Framework
	Deployment

	Using M2E
	Create a new Maven Project
	Importing the Examples into Eclipse
	How to build the Examples
	Implement the Functionality
	Run the Bundle on the Integrated Framework
	Deployment

	Debugging Bundles with Eclipse
	Prerequisites
	Background
	Setup of the Debugging Environment
	Start the Debug Server
	Start the Debug Client

	JamaicaAMS Runtime Reference
	JamaicaAMS Properties
	Config Properties
	System Properties
	Logger Properties

	Budgets
	Thread Count
	Bundle Threads

	Usage of the Java Native Interface (JNI)

	Information for Specific Targets
	Linux
	Shared Libraries
	Random Number Generator

