Realtime and Embedded

Specification for Java
Version 2.0

Final Draft

Mars Rover Edition

10t of June 2024

Editor
James J. Hunt
aicas GmbH
Emmy-Noether-Strafie 9
D-76131 Karlsruhe, Germany

Copyright © 1999-2012 TimeSys
Copyright © 2012-2024 aicas GmbH

All rights reserved

The Realtime and Embedded Specification for Java (RTSJ) is under development
within the Java Community Process (JCP) by the members of the JSR-282 Expert
Group (EG). This group, was lead by TimeSys Inc. Corporation, but has been
taken over by aicas GmbH.

JSR-282 Expert Group Membership

James J. Hunt aicas GmbH
Andy Wellings
Ethan Blanton

Past Expert Group Members

Peter Dibble TimeSys
David Holmes Oracle
Benjamin Brosgol
Kelvin Nilsen

i

Table of Contents

Contents i
List of Figures xiii
List of Tables xiv
1 Introduction 1
1.1 Guiding Principles 2
1.1.1 Applicability Across Java Environments 2
1.1.2 Backward Compatibility 2
1.1.3 Write Once, Run Anywhere 3
1.1.4 Current Practice vs. Advanced Features 3
1.1.5 Predictable Execution 3
1.1.6 No Syntactic Extension 3
1.1.7 Allow Variation in Implementation Decisions 3
1.1.8 Imteroperability L. 3

1.2 Areas of Enhancement L 0L 3
1.2.1 Thread Scheduling and Dispatching 4
1.2.2 Memory Management oL 4
1.2.3 Synchronization and Resource Sharing 4
1.2.4 Asynchronous Event Handling)
1.2.5 Task Interruption)
1.2.6 Raw Memory Access o i 5
1.2.7 Physical Memory Access oL 5
1.2.8 Modularization Lo o)

2 Overview 7
2.1 Threads and Scheduling 7
2.2 Synchronization 8
2.2.1 Priority Inversion oL 9
2.2.2 Priority Inversion Avoidance 9
2.2.3 Execution Eligibility 00 0oL 10
224 Wait-Free Queues o 11

2.3 Asynchrony 11
2.3.1 Asynchronous Events 11
2.3.2 Asynchronous Transfer of Control 12
2.3.2.1 Methodological Principles 13
2.3.2.2 Expressibility Principles oL 13

TABLE OF CONTENTS

2.3.2.3 Semantic Principles 0o 0L, 13
2.3.24 Pragmatic Principles 0L 14
2.3.3 Asynchronous Realtime Thread Termination 14
2.4 Clocks, Time, and Timers 14
2.5 Memory Management 0oL 15
251 Memory Areas 15
2.5.2 Heap Memory 16
2.5.3 Immortal Memory Lo 16
2.5.4 Scoped Memory Lo 16
2.5.5 Physical Memory Areas oL 17
2.5.6 Budgeted Allocation, 17
2.6 Device Access and Raw Memory 17
2.6.1 Raw Memory Access 18
2.7 System Options 18
2.8 Resource Enforcement o oL 18
2.9 Exceptions 18
2,10 Summary e e e e 19
3 General Requirements 21
3.1 Definitions e 21
3.2 Semanticso 22
3.2.1 Base Requirements 22
3.22 Modules e 23
3.2.2.1 Core Module 23
3.2.2.2 Alternative Memory Areas Module 26
3.2.2.3 Control Module 26
3.2.24 Device Module L 26
3.2.2.5 POSIX module 27
3.2.2.6 Resource Enforcement L. 27
3.2.3 Optional Features 0. 28
3.2.4 Deprecated Classes i 28
3.2.5 Implementation types Allowed 29
3.2.5.1 Realtime Deployment Implementation 29
3.2.5.2 Simulation Implementation 30

3.3 Required Documentation 31
3.4 Rationale 33
4 Realtime vs Conventional Java 35
4.1 Definitions L 36
4.2 Semantics e e 37
4.2.1 Scheduling 37
4.2.1.1 Priority oo 38
4.2.1.2 Thread Groups 39
4.2.1.3 Current Thread 40
4.2.2 InterruptedException L. 40
4.2.3 Java Memory Model oL 40
4.24 Memory Management oL 41

ii RTSJ 2.0 (Final Draft)

TABLE OF CONTENTS

4.2.4.1 Memory Areas 41
4.2.4.2 Garbage Collection L. 41
4.2.4.3 Realtime Garbage Collections 42

4.3 Rationale 43
5 Realtime Threads 45
5.1 Definitions 45
5.2 Semantics 46
5.2.1 Startup Considerations 47
5.3 javax.realtimeo Lo 48
5.3.1 Enumerations 48
5.3.1.1 PhasingPolicy o 48
5.3.2 Classes e 50
5.3.2.1 ConfigurationParameters 50
5.3.2.2 RealtimeThread, 55

54 Rationale 72
6 Scheduling 73
6.1 Definitions 74
6.2 Semantics 76
6.2.1 Schedulers 7
6.2.1.1 Affinity 7
6.2.1.2 Parameter Values 78
6.2.1.3 Release Control 79
6.2.1.4 Dispatching oo 90
6.2.1.5 Cost Monitoring and Cost Enforcement 92
6.2.2 Priority Schedulers oo o oo 94
6.2.2.1 Priorities 94
6.2.2.2 First-In-First-Out-Scheduler 94
6.2.2.3 The Round-Robin Scheduler 95
6.2.2.4 Parameter Values 96
6.2.3 Associating Schedulables with Schedulers 96
6.2.4 Managing Groups of Schedulables 97
6.2.4.1 Realtime Thread Groups 97

6.3 javax.realtime 99
6.3.1 Interfaces 99
6.3.1.1 BoundSchedulable L. 99
6.3.1.2 Schedulable 99
6.3.2 Enumerations 106
6.3.2.1 MinimumlInterarrivalPolicy 106
6.3.2.2 QueueOverflowPolicy 108
6.3.3 Classes 110
6.3.3.1 Affinity 110
6.3.3.2 AperiodicParameters L. 118
6.3.3.3 BackgroundParameters L. 122
6.3.3.4 FirstInFirstOutParameters 124
6.3.3.5 FirstInFirstOutScheduler 125

RTSJ 2.0 (Final Draft) iii

TABLE OF CONTENTS

6.3.3.6 PeriodicParameters 128
6.3.3.7 PriorityParameters 0oL 134
6.3.3.8 PriorityScheduler L. 136
6.3.3.9 RealtimeThreadGroup 139
6.3.3.10 ReleaseParameters 144
6.3.3.11 Scheduler 154
6.3.3.12 SchedulingParameters 158
6.3.3.13 SporadicParameters 160

6.4 Rationale 165
6.4.1 RealtimeThreadGroup 166
6.4.2 Multiprocessor Supporto 166
6.4.3 Impact of Clock Granularity 167
6.4.4 Deadline Miss Detection 168
7 Synchronization 169
7.1 Definitions 169
7.2 Semanticso 170
7.2.1 Monitor Control 170
7.2.2 Priority Schedulers oo oo 170
7.2.3 Additional Schedulers oL 173
7.3 javax.realtime 174
7.3. 1 Classes v v v i e 174
7.3.1.1 MonitorControl L 174
7.3.1.2 PriorityCeilingEmulation 176
7.3.1.3 Prioritylnheritanceo oL 179
7.3.1.4 WaitFreeReadQueue 180
7.3.1.5 WaitFreeWriteQueueo oL 186

7.4 Rationale e 191
8 Asynchrony 193
8.1 Definitions e 194
8.2 Semantics 195
8.2.1 Asynchronous Events and their Handlers 195
8.2.2 Active Events and Dispatching 197
8.2.3 Termination 199
8.3 javax.realtimeo oo 200
8.3.1 Imterfaces 200
8.3.1.1 ActiveEvent 200
8.3.1.2 Releasable 203
8.3.1.3 ReleaseRunner.Proxy, 204
8.3.14 Subsumable.o 205
8.3.2 Classes L 205
8.3.2.1 ActiveEventDispatcher 205
8.3.2.2 AsyncBaseEvento o000 212
8.3.2.3 AsyncBaseEventHandler 215
8.3.24 AsyncEvento 225
8.3.2.5 AsyncEventHandler 227

iv RTSJ 2.0 (Final Draft)

TABLE OF CONTENTS

8.3.2.6 AsyncLongEvento 231
8.3.2.7 AsyncLongEventHandler 233
8.3.2.8 AsyncObjectEvent oL 236
8.3.2.9 AsyncObjectEventHandler 238
8.3.2.10 BoundAsyncEventHandler 241
8.3.2.11 BoundAsyncLongEventHandler 245
8.3.2.12 BoundAsyncObjectEventHandler 248
8.3.2.13 FirstInFirstOutReleaseRunner 251
8.3.2.14 ReleaseRunner, 254

8.4 Rationale 257
9 Time 259
9.1 Definitions 259
9.2 Semantics e e 260
9.3 javax.realtime Lo 263
9.3.1 Classes v i e e e e 263
9.3.1.1 AbsoluteTime 263
9.3.1.2 HighResolutionTime 274
9.3.1.3 RelativeTime 283
9.4 Rationale 293
10 Clocks and Timers 295
10.1 Definitions e 295
10.2 Semantics e 296
10.2.1 Clock Model 296
10.2.2 Using Clocks o 298
10.2.2.1 Sleeping and Waiting, 298
10.2.2.2 Timer 298
10.2.2.3 Dispatching oo 299
10.2.3 Modeling Timers 300
10.2.3.1 Counter Model 301
10.2.3.2 Comparator Model 301
10.2.3.3 Triggering e 301
10.2.3.4 Behavior of Timers 301
10.2.3.5 Phasing 302
10.3 javax.realtime 303
10.3.1 Interfaces 303
10.3.1.1 Chronograph 303
10.3.2 Classes v v i e e 307
10.3.2.1 Clock e 307
10.3.2.2 OneShotTimer 312
10.3.2.3 PeriodicTimer 314
10.3.2.4 TimeDispatcher 320
10.3.2.5 Timer 323
10.4 Rationale 332
11 Alternative Memory Areas 335

RTSJ 2.0 (Final Draft) v

TABLE OF CONTENTS

vi

11.1 Definitions L 337
11.2 Semantics 338
11.2.1 Allocation Execution Time 339
11.2.2 Allocation Context 339
11.2.3 Backing Stores. 340
11.2.4 The Parent Scope 340
11.2.5 Memory Areas and Schedulables 341
11.2.6 Scoped Memory Reference Counting 341
11.2.7 Immortal Memory Lo o 342
11.2.8 Maintaining Referential Integrity 343
11.2.9 Object Initialization oL 344
11.2.10 Maintaining the Scope Stack 344
11.2.11 The enter Method 345
11.2.12 The executeInArea or newInstance Methods 345
11.2.13 Constructor Methods for Schedulables. 346
11.2.14 The Single Parent Rule 346
11.2.15 Scope Tree Maintenance 346
11.2.15.1 Pushing a MemoryArea onto the Scope Stack 347
11.2.15.2 Popping a MemoryArea off the Scope Stack 347
11.2.15.3 Reservation Management 348
11.2.16 Stacked Memory 348
11.2.16.1 Avoiding Backing Store Fragmentation 348
11.2.16.2 Enforcing Encapsulation. 349
11.2.16.3 Exampleo 350
11.2.17 Pinnable Memory o 351
11.2.18 Startup Considerations 351
11.3 javax.realtime Lo 353
11.3.1 Enumerations o 353
11.3.1.1 EnclosedType 353
11.3.2 Classes . . . o v v v v i e 355
11.3.2.1 HeapMemory 355
11.3.2.2 ImmortalMemoryo L. 358
11.3.2.3 MemoryArea 360
11.3.2.4 MemoryParameters 372
11.3.2.5 PerennialMemory L. 375
11.3.2.6 SizeEstimator L. 376
11.4 javax.realtime.memory 381
11.4.1 Annotations L 381
11.4.1.1 ClassAllocation 381
11.4.2 Enumerations 381
11.4.2.1 MemoryAreaType 381
11.4.3 Classes o o e 382
11.4.3.1 LTMemory« e 382
11.4.3.2 PinnableMemory oL 385
11.4.3.3 ScopedConfigurationParameters 398
11.4.3.4 ScopedMemory 400

RTSJ 2.0 (Final Draft)

TABLE OF CONTENTS

11.4.3.5 ScopedMemoryParameters 425
11.4.3.6 StackedMemoryo 428
11.5 The Rationale 441
11.5.1 Package Separation L. 442
11.5.2 Class Allocation and Initialization 442
11.5.3 The Scoped Memory Model 442
11.5.4 Reservation Management 443
11.5.5 Backing Store Management 443
11.5.6 The Removal of Physical Memory 444
12 Asynchronous Control Flow 445
12.1 Definitions 446
12.2 Semantics L 447
12.2.1 Asynchronous Transition Point 447
12.2.2 Asynchronous Transfer of Control 448
12.2.2.1 Extending Conventional Java Interrupts 451
12.2.2.2 Nesting AsynchronouslylnterruptedExceptions 451
12.2.3 Asynchronous Task Termination 452
12.3 javax.realtime.control Lo 454
12.3.1 Imterfaces 454
12.3.1.1 Interruptible 454
12.3.2 Classes o o o 455
12.3.2.1 AsynchronousControlGroup 455
12.3.2.2 AsynchronouslyInterruptedException 456
12323 Timed Lo 464
12.4 Rationale 466
12.4.1 Asynchronous Transfer of Control 466
12.4.2 Asynchronous Task Termination 467
13 Devices and Triggering 469
13.1 Definitions L L 470
13.2 Semantics 471
13.2.1 Raw Memory o 471
13.2.1.1 Raw Memory Region, 473
13.2.1.2 Raw Memory Factory 473
13.2.1.3 Stride 473
13.2.2 External Triggering oL 474
13.2.2.1 Happenings 475
13.3 javax.realtime.device L Lo 477
13.3.1 Imterfaces AT7
13.3.1.1 RawByte o ATT7
13.3.1.2 RawByteReader 0L 477
13.3.1.3 RawByteWritero L. 480
13.3.1.4 RawDouble o 482
13.3.1.5 RawDoubleReader o Lo 483
13.3.1.6 RawDoubleWriter oL 485
13.3.1.7 RawFloat 488

RTSJ 2.0 (Final Draft) vii

TABLE OF CONTENTS

13.3.1.8 RawFloatReader 488
13.3.1.9 RawFloatWriter 491
13.3.1.10 Rawlnto 494
13.3.1.11 RawlIntReader, 494
13.3.1.12 RawIntWriter o oo 497
13.3.1.13 RawLong 499
13.3.1.14 RawLongReader 500
13.3.1.15 RawLongWriter 502
13.3.1.16 RawMemory o 505
13.3.1.17 RawMemoryRegionFactory 506
13.3.1.18 RawShort 521
13.3.1.19 RawShortReader Lo 522
13.3.1.20 RawShortWriter oL 524
13.3.2 Classes o e 527
13.3.2.1 Happening 527
13.3.2.2 HappeningDispatcher 535
13.3.2.3 RawMemoryFactory o oL 539
13.3.2.4 RawMemoryRegion 559
13.4 Rationale 561
13.4.1 Typed Raw Memory 561
14 Interprocess Signaling 565
14.1 Definitions 565
14.2 Semantics L 565
14.2.1 POSIX Signals 566
14.2.2 POSIX Realtime Signals 566
14.3 javax.realtime.posix Lo Lo 567
14.3.1 Classes v o e e 567
14.3.1.1 RealtimeSignal oo 567
14.3.1.2 RealtimeSignalDispatcher 975
14.3.1.3 Signalo 578
14.3.1.4 SignalDispatcher o o 589
14.4 Rationale 592
15 Resource Enforcement 595
15.1 Definitions 595
15.2 Semantics 595
15.2.1 Processing Constraint 597
15.2.2 Thread Constraint 598
15.2.3 Heap Memory Constraints 599
15.2.4 Immortal Memory Constraints 599
15.2.5 Backing Store Constraints 599
15.3 javax.realtime.enforce oL 600
15.3.1 Classes o o oo 600
15.3.1.1 BackingStoreConstraint 600
15.3.1.2 ConstraintExceededException 603
15.3.1.3 HeapConstraint 605

viii RTSJ 2.0 (Final Draft)

TABLE OF CONTENTS

15.3.1.4 ImmortalConstraint 608
15.3.1.5 ProcessingConstraint, 611
15.3.1.6 ResourceConstraint 622
15.3.1.7 ThreadConstraint 626
15.4 Rationale 629
15.4.1 ProcessingConstraint 0L 629
16 System and Options 631
16.1 Semantics 631
16.1.1 RealtimeSystem oo 631
16.1.2 Realtime Security L 631
16.1.3 GarbageCollection L 635
16.1.4 Compliance Version 635
16.2 javax.realtime Lo 636
16.2.1 Enumerations 636
16.2.1.1 RTSJModule 636
16.2.2 Classes o o o e 638
16.2.2.1 GarbageCollector oL 638
16.2.2.2 ImmortalMemoryPermission 639
16.2.2.3 RealtimePermission 642
16.2.2.4 RealtimeSystem 645
16.2.2.5 SchedulingPermission 649
16.2.2.6 TaskPermission oo L. 653
16.2.2.7 TimePermission 656
16.3 javax.realtime.device L oL 659
16.3.1 Classes v v i e e e 659
16.3.1.1 HappeningPermission 659
16.3.1.2 RawMemoryPermission 662
16.4 javax.realtime.enforce oL 665
16.4.1 Classes . . . o v v v i i e e 665
16.4.1.1 ConstraintPermission 665
16.5 javax.realtime.memory Lo 668
16.5.1 Classes o 668
16.5.1.1 ScopedMemoryPermission 668
16.6 javax.realtime.posixo 671
16.6.1 Classes o 671
16.6.1.1 POSIXPermission 671
16.7 Rationale 674
17 Exceptions 675
17.1 Semantics L 675
17.2 javax.realtime Lo 678
17.2.1 Annotations 678
17.2.1.1 StaticThrowable.Hidden 678
17.2.2 Interfaces 678
17.2.2.1 StaticThrowable 678
17.2.3 Classes o o i 684

RTSJ 2.0 (Final Draft) ix

TABLE OF CONTENTS

17.2.3.1 AlignmentError 0oL 684
17.2.3.2 ArrivalTimeQueueOverflowException 686
17.2.3.3 BackingStoreAllocationException 687
17.2.3.4 CeilingViolationException 688
17.2.3.5 ConstructorCheckedException 690
17.2.3.6 DeregistrationException L. 694
17.2.3.7 EventQueueOverflowkException 695
17.2.3.8 ForEachTerminationException 696
17.2.3.9 IlegalAssignmentError 697
17.2.3.10 HlegalTaskStateException 698
17.2.3.11 InaccessibleAreaException 702
17.2.3.12 LateStartException 703
17.2.3.13 MITViolationException 704
17.2.3.14 MemoryAccessError 0oL 706
17.2.3.15 MemoryInUseException 707
17.2.3.16 MemoryScopeException L. 708
17.2.3.17 MemoryTypeConflictException 709
17.2.3.18 OffsetOutOfBoundsException 710
17.2.3.19 POSIXInvalidSignalException 711
17.2.3.20 POSIXInvalidTargetException 712
17.2.3.21 POSIXSignalPermissionException 713
17.2.3.22 ProcessorAffinityException L. 714
17.2.3.23 RangeOutOfBoundsException 715
17.2.3.24 RegistrationException 0oL, 717
17.2.3.25 ResourceLimitError 0L 718
17.2.3.26 ScopedCycleException 719
17.2.3.27 SizeOutOfBoundsException 720
17.2.3.28 StaticCheckedException 721
17.2.3.29 StaticError o 723
17.2.3.30 Staticlllegal ArgumentException 726
17.2.3.31 StaticlllegalStateException 730
17.2.3.32 StaticOutOfMemoryError 733
17.2.3.33 StaticRuntimeExceptiono 0L 737
17.2.3.34 StaticSecurityExceptiono 0oL 739
17.2.3.35 StaticThrowableStorage 743
17.2.3.36 StaticUnsupportedOperationException 47
17.2.3.37 ThrowBoundaryError L. 751
17.2.3.38 UninitializedStateException 752
17.2.3.39 UnsupportedRawMemoryRegionException 753
17.3 Rationale 754
A Bibliography 757
B Deprecated APIs 759
B.1 Semantics 759
B.2 javax.realtime 760
B.2.1 Interfaces 760

RTSJ 2.0 (Final Draft)

TABLE OF CONTENTS

B.2.1.1 Interruptible oo 760
B.2.1.2 PhysicalMemoryTypeFilter 761
B.2.1.3 Schedulableo 767
B.22 Classes 769
B.2.2.1 AbsoluteTime L 769
B.2.2.2 AperiodicParameters oo 772
B.2.2.3 ArrivalTimeQueueQuverflowException 776
B.2.24 AsyncBaseFventHandler 776
B.225 AsyncFvent 778
B.2.2.6 AsyncEventHandler 781
B.2.2.7 AsynchronouslylnterruptedException 794
B.2.2.8 BoundAsyncEventHandler 800
B.2.2.9 DuplicateFilterException 802
B.2.2.10 HighResolutionTime 802
B.2.2.11 lllegalAssignmentError 804
B.2.2.12 ImmortalPhysicalMemory 805
B.2.2.13 ImportanceParameters. 812
B.2.2.14 InaccessibleAreaEzception 814
B.2.2.15 LTMemory e 815
B.2.2.16 LTPhysicalMemory 820
B.2.2.17 MemoryAccessError oo 828
B.2.2.18 MemoryInUseException 828
B.2.2.19 MemoryParameters o 829
B.2.2.20 MemoryScopeException oL 832
B.2.2.21 MemoryTypeConflictException 833
B.2.2.22 NoHeapRealtimeThread 834
B.2.2.23 OffsetOutOfBoundsFException 837
B.2.2.24 POSIXSignalHandler 838
B.2.2.25 PeriodicParameters oo 843
B.2.2.26 PhysicalMemoryManager 844
B.2.2.27 PriorityParameters oo 851
B.2.2.28 PriorityScheduler L. 852
B.2.2.29 ProcessingGroupParameters 859
B.2.2.30 RationalTime. 868
B.2.2.31 RawMemoryAccess 872
B.2.2.32 RawMemoryFloatAccess 893
B.2.2.33 RealtimeSecurity o oo 902
B.2.2.34 RealtimeSystem 905
B.2.2.35 RealtimeThread, 907
B.2.2.36 RelativeTime 924
B.2.2.37 ReleaseParameters 928
B.2.2.38 ResourceLimitError oL 929
B.2.2.39 Scheduler 930
B.2.2.40 ScopedCycleException 935
B.2.2.41 ScopedMemoryo 936
B.2.2.42 SizeOutOfBoundsFException 949

RTSJ 2.0 (Final Draft) xi

TABLE OF CONTENTS

B.2.2.43 SporadicParameters 950
B.2.2.44 ThrowBoundaryError 953
B.22.45 Timed 954
B.2.2.46 UnknownHappeningException 956
B.2.2.47 UnsupportedPhysicalMemoryException 957
B.2248 VTMemory o o 958
B.2.2.49 VTPhysicalMemory 963
B.3 Rationale 970
C Indices 973
C1 ClassIndex 973
C.2 Method Index 975

xii RTSJ 2.0 (Final Draft)

List of Figures

6.1
6.2
6.3

8.1
8.2
8.3
8.4

10.1
10.2

11.1
12.1

13.1
13.2
13.3
13.4
13.5

15.1
15.2

Sequence Diagram of Some Example Realtime Thread Releases. . . . 87
A State Chart for a Realtime Thread without a Deadline Miss Handler 88
A State Chart for a Realtime Thread with a Deadline Miss Handler . 89

The Event Class Hierarchy 195
Releasing an AysncEventHandler 197
States of a Simple AsyncBaseEvent 197
States of an ActiveEvent oL 198
Sequence Diagram for Using a Timer 300
States of a Timer 303
Manipulation of StackedMemory Areas 350
Control Flow Change State Diagrams 449
Raw Memory Interface 472
Event Classes 474
Happening State Transition Diagram 475
Interrupt servicing Lo Lo 476
Creating Raw Memory Accessors 562
Enforcement Partitioning Hierarchy 596
Starting and Stopping Enforcement00 0L 596

xiil

List of Tables

3.1
5.1

6.3
6.5
6.7
6.9
6.11
6.13

8.1

9.1
9.2

11.1
13.1
15.1

B.1
B.3

RTSJ Options e 28
PhasingPolicy Effect on First Release of a RealtimeThread with Peri-

odicParameters L oo 49
AperiodicParameters Default Values. 119
FirstInFirstOut Default PriorityParameter Values 126
PeriodicParameter Default Values 129
PriorityScheduler Default PriorityParameter Values 136
ReleaseParameter Default Values 145
SporadicParameters Default Values 161
Event to Handler Matrix 194
Examples of Normalized Times 260
Semantics of Time Conversion 262
Memory Area Referencing Restrictions 343
Properties Arrayo 541
ProcessingConstraint Default Values 613
ProcessingGroupParameter Default Values 861
Properties Array 874

Xiv

Chapter 1

Introduction

The goal of the Real-Time Specification for Java (RTSJ) is to support the use of
Java technology in embedded and realtime systems. It provides a specification for
refining the Java Language Specification and the Java Virtual Machine Specification
and for providing an extended Application Programming Interface that facilitates
the creation, verification, analysis, execution, and management of realtime Java
programs such as control and sensor applications.

The Java Virtual Machine and the Java Language were conceived as a portable en-
vironment for desktop and server applications. The emphasis has been on throughput
and responsiveness. These are characteristics obtainable with time-sharing systems.
For this conventional Java environment, it is more important that each task makes
progress, than that a particular task completes within a predefined time slot.

In a realtime system, the system tries to schedule the most critical task that is
ready to run first. This task runs either until it is finished, or it needs to wait for
some event or data, or a more critical task is released or a more critical task becomes
schedulable after waiting for its event or data.

Realtime scheduling is commonly done with a priority preemptive scheduler,
where tasks that have short deadlines are given higher priority than tasks that have
longer deadlines. The programmer is responsible for encoding some notion of task
importance to priorities. The goal is to see that all tasks finish within their deadlines.
Scheduling analysis, such as Rate Monotonic Analysis, can be used to help achieve
this goal.

Many realtime systems have nonrealtime components, so it is desirable to be able
to combine realtime and nonrealtime tasks in a single system. Realtime tasks are then
given preference over nonrealtime tasks. For Java, this means that realtime tasks
must be scheduled before threads with conventional Java priorities (1-10). Being
able to synchronize between tasks, both realtime and conventional Java threads,
imposes additional requirements.

Providing realtime semantics and the additional programming interfaces required
is a core part of this specification. This led the original specification to provided
special memory areas to avoid the use of garbage collection; however, the availability
of various techniques for realtime garbage collection has changed the state of practice
since RTSJ Version 1.0. Though still part of the specification, these special memory
areas are no longer central to it. Realtime scheduling and priority inversion avoidance

1 Introduction

for synchronization are the core of providing realtime response. These are provided
through refinements to the core Java semantics and with additional classes.

Realtime tasks can be modeled both with realtime threads and with event handlers.
Realtime threads are much the same as conventional Java threads except for how
they are scheduled. Event handlers encapsulate a bit of work that is done every time
some event occurs. Events are referred to as asynchronous because they generally
occur independent of program flow. Thus, a periodic timed event is considered to be
an asynchronous event, but scheduled periodically. Event handling provides a less
resource intensive means of writing control applications because the underlying thread
mechanism can be shared between event handlers. Deadline analysis is also somewhat
simpler because the end of the work to be done is well bounded. Event handling
is ideal for periodic tasks and responding to external impulses. The specification
provides both paradigms.

Though realtime is necessary for many control tasks, it is not sufficient. A
significant part of the RTSJ API addresses communication with the outside world
through devices and signals. This makes it possible to write control applications
without resorting to JNI, thereby maintaining the integrity and safety that Java
offers.

Since not all applications need all aspects of the specification, there are now
modules to suite the major application scenarios. This should make it easier for
conventional JVM providers to include basic specification facilities without negatively
impacting their core application domains, but still be compatible with hard realtime
implementations. The goal is to make the transition between conventional JVMs
and realtime JVMs easier.

1.1 Guiding Principles

Providing a coherent semantics and a set of programming interfaces requires some
guiding principles around which to organize the RTSJ. The following principles delimit
the scope of the RTSJ and its compatibility requirements with conventional Java.
They ensure that conventional Java code can be run with realtime Java code on a
single Java virtual machine.

1.1.1 Applicability Across Java Environments

The RTSJ shall not include specifications that restrict its use to a particular Java
environment, such as a particular versions of the Java Development Kit, an Embedded
Java Application Environment, or a Java Edition, beyond the natural development
of the Java language.

1.1.2 Backward Compatibility

The RTSJ shall not prevent existing, properly written, conventional Java programs
from executing on implementations of the RTSJ.

2 RTSJ 2.0 (Final Draft)

Areas of Enhancement 1.2

1.1.3 Write Once, Run Anywhere

The RTSJ should recognize the importance of “Write Once, Run Anywhere”, but it
should also recognize the difficulty of achieving WORA for realtime programs and not
attempt to increase or maintain binary portability at the expense of predictability.
Hence, the goal should be “Write Once Carefully, Run Anywhere Conditionally”.

1.1.4 Current Practice vs. Advanced Features

The RTSJ should address current realtime system practice as well as allow future
implementations to include advanced features.

1.1.5 Predictable Execution

The RTSJ shall hold predictable execution as first priority in all trade-offs; this may
sometimes be at the expense of typical general-purpose computing performance
measures.

1.1.6 No Syntactic Extension

In order to facilitate the job of tool developers, and thus to increase the likelihood of
timely implementations, the RTSJ shall not introduce new keywords or make other
syntactic extensions to the Java language.

1.1.7 Allow Variation in Implementation Decisions

Implementations of the RTSJ may vary in a number of implementation decisions,
such as the use of efficient or inefficient algorithms, trade-offs between time and
space efficiency, inclusion of scheduling algorithms not required in the minimum
implementation, and variation in code path length for the execution of byte codes.
The RTSJ should not mandate algorithms or specific time constants for such, but
require that the semantics of the implementation be met and where necessary put
limits on execution time complexity. The RTSJ offers implementers the flexibility to
create implementations suited to meet the requirements of their customers.

1.1.8 Interoperability

It should be possible to implement all aspects of the RTSJ on a conventional JVM
with the exception that realtime response and pointer assignment rules would not
necessarily be guaranteed. This should ease the transition between conventional and
realtime programming and aid functional testing on a conventional JVM. The API
should support modules for this as well.

1.2 Areas of Enhancement

Each guiding principle has had a direct effect on the development of the specification.
These pricples are reflected in the following aspects of the realtime refinements and ad-

RTSJ 2.0 (Final Draft) 3

1 Introduction

ditional classes in the specification. Their enumeration should aid the understanding
of the rest of the specification.

1.2.1 Thread Scheduling and Dispatching

Portability dictates the specification of at least one standard realtime scheduler, but
in light of the significant diversity in scheduling and dispatching models and the
recognition that each model has wide applicability in the diverse realtime systems
industry, the specification provides an underlying scheduling infrastructure that can
be extended to use other algorithms for scheduling realtime Java threads and event
handlers.

To accommodate current practice, the RTSJ shall require a base scheduler in all
implementations. The required base scheduler will be familiar to realtime system
programmers. It is a priority preemptive, first-in-first-out, scheduler. Since most
realtime systems also support round-robin scheduling, a round-robin scheduler shall
also be supplied. For compatibility with conventional Java implementations, both
schedulers shall use priorities above the conventional Java priorities (1-10).

The specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will enable the programmatic assignment
of parameters appropriate for the underlying scheduling mechanism as well as
provide any necessary methods for the creation, management and termination of
realtime Java threads. In the current specification, any other thread, scheduling, and
dispatching mechanism may be bound to an implementation; however, there should
be enough flexibility in the thread scheduling framework to enable future versions of
the specification to build on this release.

1.2.2 Memory Management

Automatic memory management is a particularly important feature of the Java
programming environment. The specification enables, as far as possible, the job of
memory management to be implemented automatically by the underlying system
and not intrude on the programming task. Many automatic memory management
algorithms, also known as garbage collection (GC), exist, and many of those apply
to certain classes of realtime programming styles and systems. In an attempt to
accommodate a diverse set of GC algorithms, the specification defines a memory
allocation and reclamation paradigm that
« is independent of any particular GC algorithm,
e requires the VM to precisely characterize its GC algorithm’s effect on the
preemption of realtime Java tasks, and
o enables the allocation and reclamation of objects outside of any interference by
any GC algorithm.

1.2.3 Synchronization and Resource Sharing

Logic often requires exclusive access to resources, and realtime systems introduce
an additional complexity: the need to minimize priority inversion and hence the

4 RTSJ 2.0 (Final Draft)

Areas of Enhancement 1.2

excessive delay of more critical tasks. The least intrusive specification for enabling
realtime safe synchronization is to require that implementations of the Java keyword
synchronized use one or more algorithms that prevent priority inversion among
realtime Java tasks that share the serialized resource. In addition, the specification
provides other data passing mechanisms to minimize the need for synchronization.

1.2.4 Asynchronous Event Handling

Realtime systems typically interact closely with the real world. With respect to
the execution of logic, the real world is asynchronous; therefore, the specification
includes efficient mechanisms for programming disciplines that would accommodate
this inherent asynchrony. The RTSJ has a general mechanism for asynchronous event
handling. This specification provides classes that represent things that can happen
and logic that executes when those things happen. The execution of the logic is
scheduled and dispatched by the RTSJ runtime.

1.2.5 Task Interruption

Sometimes, the real world changes so drastically (and asynchronously) that the
current point of logic execution should be immediately, efficiently, and safely ended,
and control should be transferred to another point of execution. The RTSJ provides
a mechanism which extends Java’s interrupt and exception handling mechanisms to
enable applications to programmatically change the locus of control of another Java
task. This mechanism may restrict this asynchronous transfer of control to logic
specifically written with the assumption that its locus of control may asynchronously
change. Due to the inherent susceptibility to deadlock, the Thread.stop method
cannot be used for this.

1.2.6 Raw Memory Access

Accessing device memory is not in and of itself a realtime issue; however, many
realtime systems require it for providing realtime control of a system. This requires
an API providing programmers with byte-level access to physical device registers,
whether in main memory or in some I/O space. This API must be as efficient as
possible, since such access is often under tight time constraints.

1.2.7 Physical Memory Access

Some systems provide memory areas that differ in important aspects, such as time
to read or write data and its persistence. Being able to take advantage of these areas
can have an impact on performance. This specification enables their efficient use.

1.2.8 Modularization

Not all applications require all aspects of the specification. In fact, having a core set
of the APIs presented is useful for conventional Java programming and aids overall
interoperability. To this end, the specification provides a core set of APIs and a

RTSJ 2.0 (Final Draft) 5

1 Introduction

few optional modules as well as semantics for use in conventional JVMs that do
not offer realtime guarantees. This should enable implementations to be optimized
for particular use cases and enable conventional Java environments to be used to
help develop code that can be more easily shared between realtime and conventional
systems.

6 RTSJ 2.0 (Final Draft)

Chapter 2

Overview

The RTSJ comprises several areas of extended semantics. These areas are discussed
in approximate order of their relevance to realtime programming. The semantics
and mechanisms of each topic—threads and scheduling, synchronization, asynchrony,
clocks and timers, memory management, device access and raw memory, system
options, and exceptions—are all crucial to the acceptance of the RTSJ as a viable real-
time development platform. Further details, exact requirements, class documentation,
and rationale for these extensions are given in subsequent chapters.

2.1 Threads and Scheduling

One of the concerns of realtime programming is to ensure the timely and predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently, for example, thread, task, module, or
block. In Java, this computation is executed in the context of a thread. Since Java
threads were designed for fair execution' rather than predictable execution, the RTSJ
introduces the concept of a schedulable. These are the objects managed by the base
scheduler: RealtimeThread and its subclasses and AsyncBaseEventHandler and its
subclasses. RealtimeThread is a specialization of Java’s Thread.

Timely execution of schedulables means that the programmer can determine,
by analysis of the program, testing the program on particular implementations,
or both, whether particular threads will always complete execution before a given
timeliness constraint. This is the essence of realtime programming: the addition of
temporal constraints to the correctness conditions for computation. For example, for
a program to compute the sum of two numbers, it may no longer be acceptable to
compute only the correct arithmetic answer but the answer must be computed within
a particular time interval. Typically, temporal constraints are deadlines expressed in
either relative or absolute time.

The term scheduling (or scheduling algorithm) refers to the production of a
sequence (or ordering) for the execution of a set of schedulables (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well

LActually, neither the Java Virtual Machine Specification[5] nor the Java Language
Specification[4] defines how Java threads should be scheduled, but most implementations, in-
cluding the reference implementations, use some sort of fair scheduling.

7

2 QOwverview

the system is meeting the temporal constraints). A feasibility analysis determines
if a schedule has an acceptable value for the metric. For example in hard realtime
systems, the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft realtime systems use other metrics, such
as mean tardiness, and may accept various values for the metric in use.

Many systems, including most conventional Java implementations, use thread
priority to guide the determination of a schedule. Priority is typically an integer
associated with a thread; these integers convey to the system the order in which the
threads should execute. The generalization of the concept of priority is execution
eligibility. The term dispatching refers to that portion of the system which selects
the thread with the highest execution eligibility from the pool of threads that are
ready to run.

In current realtime system practice, the assignment of priorities is typically under
programmer control as opposed to under system control. As a base scheduler for
realtime tasks, the RTSJ provides preemptive priority-based first-in-first-out (FIFO)
scheduler, which also leaves the assignment of priorities to programmer control. It
also provides a priority-based round-robin (RR) scheduler. Most realtime operating
systems (RTOS) are also based on priority preemptive scheduling and support both
FIFO and RR scheduling.

The RTSJ defines a number of classes with names of the form <string>Paramet-
ers such as ReleaseParameters, which provide parameters for resource management.
An instance of one of these parameter classes holds a particular resource-demand
characteristic for one or more schedulables. For example, the PriorityParameters
subclass of SchedulingParameters contains the execution eligibility metric of the
base and round-robin schedulers, i.e., a priority. At some time (construction-time or
later when the parameters are replaced using setter methods), instances of parameter
classes are bound to a schedulable. The schedulable then assumes the characteristics
of the values in the parameter object. For example, a PriorityParameters instance
with its priority set to the value representing the highest priority available on a
system is bound to a schedulable, then that schedulable will assume the characteristic
that it will execute whenever it is ready in preference to all other schedulables (except,
of course, those also with the same priority).

The RTSJ provides implementers with the flexibility to install arbitrary scheduling
algorithms in an implementation of the specification. This is to support the widely
varying requirements of the realtime systems industry with respect to scheduling.
Use of the Java platform may help produce code written once but able to be executed
on many different computing platforms. The RTSJ contributes to this goal, but the
rigors of realtime systems detract from it. The RTSJ’s rigorous specification of the
required priority scheduler is critical for portability of time-critical code, but the
RTSJ permits and supports platform-specific schedulers which are not necessarily
portable.

2.2 Synchronization

If the computation in each thread were independent of the computation in all other
threads, scheduling alone would be enough to ensure timeliness; however, this is

8 RTSJ 2.0 (Final Draft)

Synchronization 2.2

usually not the case. Threads often need to communicate with one another or share
data. Resources must be shared as well. Two threads cannot read different data from
the disk at the same time nor write data to a disk at the same time. They cannot
send a message to another machine at the same time. They cannot update the same
in-memory data at the same time. One thread may have to wait for another thread
to get the data it needs. Just as in a normal system, synchronization is required.
In a realtime system, this synchronization must not prevent other threads from
completing their tasks on time.

2.2.1 Priority Inversion

The additional concern for synchronization in a realtime system, as opposed to a
conventional system, is that blocking can cause the wrong thread to run first. A
high priority thread can be blocked by a low priority thread that is vying for the
same resource. A priority queue can be used to ensure that a highest priority thread
goes first, when more than one thread is waiting to enter a synchronized block, but
this is not always sufficient.

Consider a single processor system with three threads, t;, t, and t3, where t;
has the highest priority and t3 has the lowest priority. It is possible that t; can
prevent ¢; from running by preempting t3. This is called priority inversion. It occurs
when ¢, is blocked by attempting to acquire a lock that is held by thread t3 and t3
is preempted by t5. When 5 does run, it may prevent t3 from running indefinitely,
thereby keeping ¢; blocked past its deadline.

What is needed is a mechanism the ensure that, while ¢; is waiting on a resource
in use by t3, thread t3 runs before all threads with a priority less than that of ¢;.

2.2.2 Priority Inversion Avoidance

Two of the most common mechanisms for avoiding priority inversion are priority
inheritance and priority ceiling emulation (a.k.a. highest locker protocol). Both
of these boost the priority of a thread holding the lock in order to prevent a
noncontending thread from transitively blocking a higher priority thread which is
waiting for the same lock. The difference is how high the priority is raised and when.
Both take effect when a thread is in a synchronized section of code.

The first mechanism is the default behavior for synchronized blocks and methods.
It applies to all code running within the implementation, not just to schedulables.
The priority inheritance protocol is a well-known algorithm in the realtime scheduling
literature and it has the following effect. When thread ¢; attempts to acquire a lock
that is held by a lower-priority thread t3, then t3’s priority is raised to that of t; as
long as t3 holds the lock (and recursively if ¢3 is itself waiting to acquire a lock held
by an even lower-priority thread).

The specification also provides a mechanism by which the programmer can override
the default system-wide policy, or control the policy to be used for a particular
monitor, provided that policy is supported by the implementation. The second
mechanism, priority ceiling emulation protocol, can be set using this mechanism. It
is also a well-known algorithm in the literature. The following three points provide a

RTSJ 2.0 (Final Draft) 9

2 QOwverview

somewhat simplified description of its effect.

1. A monitor is given a “priority ceiling" when it is created; the programmer
should choose at least the highest priority of any thread that could attempt to
enter the monitor.

2. As soon as a thread enters synchronized code, its (active) priority is raised to
the monitor’s ceiling priority. If, through programming error, a thread has a
higher base priority than the ceiling of the monitor it is attempting to enter,
then an exception is thrown.

3. On leaving the monitor, the thread has its active priority reset. In simple
cases it will set be to the thread’s previous active priority, but under some
circumstances (e.g. a dynamic change to the thread’s base priority while it was
in the monitor) a different value is possible.

In addition, threads and asynchronous event handlers waiting to acquire a resource
must be released from highest to lowest priority (in priority order). This applies to
processors as well as to synchronized blocks. If schedulables with the same priority
are possible under the active scheduling policy, such schedulables are awakened in
FIFO order. This is exemplified in the following scenarios.

1. Threads waiting to enter synchronized blocks are granted access to the syn-
chronized block in priority order.

2. A blocked thread that becomes ready to run is given access to a processor in
priority order.

3. A thread whose priority is explicitly set by itself or another thread is given
access to a processor in priority order.

4. A thread that performs a yield will be given access to the processor after
waiting for threads of the same priority to be given a processor.

5. Threads that are preempted in favor of a thread with higher priority may
be given access to a processor at any time as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for granting such access.

In any case, there needs to be a fixed upper bound on the time required to enter
a synchronized block for an unlocked monitor.

2.2.3 Execution Eligibility

Since an implementation of the RTSJ may provide schedulers other than priority-based
schedulers, the notion of priority can be generalized to execution eligibility. Execution
eligibility defines a partial ordering over all tasks for determining which task should
run before which other tasks. Execution eligibility may be determined dynamically.
For example, earliest deadline first (EDF) scheduling determines execution eligibility
ordering by the order of the next deadlines for each of its tasks. The notion of
priority, as described above, can be generalized to execution eligibility to integrate
other schedulers into an RTSJ implementation.

10 RTSJ 2.0 (Final Draft)

Asynchrony 2.3

2.2.4 Wait-Free Queues

While the RTSJ requires that the execution of schedulables which do not access
the heap must not be delayed by garbage collection on behalf of lower-priority
schedulables, an application can cause such a schedulable to wait for garbage collection
by synchronizing using an object shared with a heap-using thread or schedulable.
The RTSJ provides wait-free queue classes to provide protected, nonblocking, shared
access to objects accessed by both regular Java threads and schedulables, which do
not access the heap.

2.3 Asynchrony

Since a realtime system must be able to react to the outside world, the system needs
to be able to change its execution flow asynchronously to the current execution. All
external signals, whether interrupts, messages, or timed events, are asynchronous
with respect to ongoing computation. This means that computation must be both
startable and stoppable based on external stimuli.

2.3.1 Asynchronous Events

Asynchronous event provide a means of starting computation based on external
stimuli. The asynchronous event facility is based on two classes: AsyncBaseEvent
and AsyncBaseEventHandler. An AsyncBaseEvent object represents something
that can happen, like a POSIX signal, a hardware interrupt, or a computed event
like an airplane entering a specified region. When one of these events occurs,
which is indicated by the fire() method being called, the associated instances of
AsyncBaseEventHandler are scheduled and the handleAsyncEvent () methods are
invoked, thus the required logic is performed. Also, methods on AsyncBaseEvent
are provided to manage the set of instances of AsyncBaseEventHandler associated
with the instance of AsyncBaseEvent.

An instance of an AsyncBaseEventHandler can be thought of as something sim-
ilar to a thread. When an event fires, the associated handlers are scheduled and the
handleAsyncEvent () methods are invoked. What distinguishes an AsyncBaseEvent-
Handler from a simple Runnable is that an AsyncBaseEventHandler has associated
instances of ReleaseParameters, SchedulingParameters and MemoryParameters
that control the actual execution of the handler once the associated AsyncBaseEvent
is fired. When an event is fired, the handlers are executed asynchronously, sched-
uled according to the associated ReleaseParameters and SchedulingParameters
objects, in a manner that looks like the handler has just been assigned to its own
thread. It is intended that the system can cope well with situations where there are
large numbers of instances of AsyncBaseEvent and AsyncBaseEventHandler (tens
of thousands), since the number of fired (in progress) handlers is expected to be
much smaller.

There are specialized forms of AsyncBaseEvent: AsyncEvent, AsyncLongEvent,
and AsyncObjectEvent for events that are stateless, carry a long payload, and
carry an Object payload, respectively. They are matched by specialized forms

RTSJ 2.0 (Final Draft) 11

2 QOwverview

of AsyncBaseEventHandler: AsyncEventHandler, AsyncLongEventHandler, and
AsyncObjectEventHandler. Most external events are stateless, but sometimes it is
helpful to be able to receive some information about the event or pass some data
with the event. The Long and Object variants enable this and the RealtimeSignal
takes advantage of it.

Another specialized form of an AsyncEvent is the Timer class, which represents
an event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at
the specified time. Periodic timers fire initially at the specified time, and then
periodically according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object, Clock.
getRealtimeClock (), that represents the realtime clock. The Clock class may be
extended to represent other clocks, which the underlying system might make available
(such as an execution-time clock of some granularity).

2.3.2 Asynchronous Transfer of Control

Many event-driven computer systems that tightly interact with external physical
systems (e.g., humans, machines, control processes, etc.) may require mode changes
in their computational behavior as a result of significant changes in the actual
real-world system. It simplifies the architecture of a system when a task can be
programmatically terminated when an external physical system change causes its
computation to be superfluous. Without this facility, a thread or set of threads
have to be coded so that their computational behavior anticipates all of the possible
transitions among possible states of the external system. When the external system
makes a state transition, the changes in computation behavior can be managed by
an oracle that terminates a set of threads required for the old state of the external
system, and invokes a new set of threads appropriate for the new state of the external
system. Since the possible state transitions of the external system are encoded only
in the oracle and not in each thread, the overall system design is simpler.

There is a second requirement for a mechanism to terminate some computation,
where a potentially unbounded computation needs to be done in a bounded period
of time. In this case, if that computation can be executed with an algorithm that
is iterative, and produces successively refined results, the system could abandon
the computation early and still have usable results. The RTSJ supports aborting a
computation by a signal from another thread or by the expiration of a timer with a
feature termed Asynchronous Transfer of Control (ATC).

An example of the second case is processing compressed video for a human
controller. The system knows that a new frame must be produced at a constant
update frequency. The cost of each iteration is highly variable and the minimum
required latency to terminate the computation and receive the last consistent result
is much less than the mean cost and bound of an iteration. Therefore, using ATC
for interrupting a computation to capture an intermediate result at the expiration of
a known time bound is a convenient programming style. Of course, there are other
kinds of programming tasks that may also benefit from ATC.

The RTSJ’s approach to ATC uses asynchronous interruptions and exceptions,

12 RTSJ 2.0 (Final Draft)

Asynchrony 2.3

and is based on several guiding principles covering methodology, expressiveness,
semantics, and pragmatic concerns.

2.3.2.1 Methodological Principles

1. A method must explicitly indicate its susceptibility to ATC, i.e., it is asyn-
chronously interruptible. Since legacy code or library methods might have been
written assuming no ATC, by default ATC must be turned off (more precisely,
must be deferred as long as control is in such code).

2. Even if a method allows ATC, some code sections must be executed to comple-
tion and thus ATC is deferred in such sections. These ATC-deferred sections
are synchronized methods, synchronized statements, catch clauses, and static
initializers.

3. Code that responds to an ATC does not return to the point in the schedulable
where the ATC was triggered; that is, an ATC is an unconditional transfer of
control. Resumptive semantics, which returns control from the handler to the
point of interruption, are not needed since they can be achieved through other
mechanisms (in particular, an AsyncEventHandler).

2.3.2.2 Expressibility Principles

1. A mechanism is needed through which an ATC can be explicitly triggered in
a target schedulable. This triggering may be direct (from a source thread or
schedulable) or indirect (through an asynchronously interrupted exception).

2. It must be possible to trigger an ATC based on any asynchronous event
including an external happening or an explicit event firing from another thread
or schedulable. In particular, it must be possible to base an ATC on a timer
going off.

3. Through ATC it must be possible to abort a realtime thread but in a manner
that does not carry the dangers of the Thread class’s stop() and destroy()
methods.

2.3.2.3 Semantic Principles

1. When ATC is modeled by exception handling, there must be some way to
ensure that an asynchronous exception is only caught by the intended handler
and not, for example, by an all-purpose handler that happens to be on the
propagation path.

2. Nested ATCs must work properly. For example, consider two, nested ATC-
based timers and assume that the outer timer has a shorter time-out than the
nested, inner timer. When the outer timer times out while control is in the
nested code of the inner timer, then the nested code must be aborted (as soon
as it is outside an ATC-deferred section), and control must then transfer to the
appropriate catch clause for the outer timer. An implementation that either
handles the outer time-out in the nested code, or that waits for the longer
(nested) timer, is incorrect.

RTSJ 2.0 (Final Draft) 13

2 QOwverview

2.3.2.4 Pragmatic Principles

1. There should be straightforward programming idioms for common cases such
as timer handlers and realtime thread termination.

2. When code with a time-out completes before the timer’s expiration, the timer
needs to be automatically stopped and its resources returned to the system.

2.3.3 Asynchronous Realtime Thread Termination

A special case of stopping a particular computation is stopping a thread. Earlier
versions of the Java language supplied mechanisms for achieving these effects: in par-
ticular the methods stop() and destroy() in class Thread. However, since stop()
could leave shared objects in an inconsistent state, stop() has been deprecated. The
use of destroy() can lead to deadlock, e.g., when a thread is destroyed while it
is holding a lock, and although it was not deprecated until version 1.5 of the Java
specification, its usage has long been discouraged. A goal of the RTSJ was to meet the
requirements of asynchronous thread termination without introducing the dangers of
the stop() or destroy() methods.

The RTSJ accommodates safe asynchronous realtime thread termination through

a combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. To create such a set of realtime threads consider the following
steps:

1. make all of the application methods of the realtime thread asynchronously
interruptible;

2. create an oracle’ which monitors the external world by setting up an asyn-
chronous event with a number of asynchronous event handlers, which is fired
when an appropriate mode change;

3. have the handlers call interrupt () on each of the realtime threads affected
by the change; then

4. after the handlers call interrupt (), have them create a new set of realtime
threads appropriate to the current state of the external world.

The effect of the event is to cause each interruptible method to abort abnormally by
transferring control to the appropriate catch clause. Ultimately the run() method
of the realtime thread will complete normally.

This idiom provides a quick but orderly clean up and termination of the realtime

thread.

2.4 Clocks, Time, and Timers

Realtime systems require a high resolution notion of time. Both very small units
and very long periods of time must be uniformly representable, a range that is not
even representable with a long value. Furthermore, a time can represent an absolute
value, usually represented as some absolute fixed point in time plus an offset, or it
can represent an interval of time. The time classes defined in Chapter 9 support a
longs worth of seconds and another integer for nanoseconds.

2Note, the oracle can comprise as many or as few asynchronous event handlers as appropriate.

14 RTSJ 2.0 (Final Draft)

Memory Management 2.5

2.5 Memory Management

The Java language is designed around automatic memory management, in particular
garbage collection. Unfortunately, though garbage collection is a functional safety and
security feature, conventional garbage collectors interrupt the normal flow of control
in a program. Therefore, garbage-collected memory heaps had been considered an
obstacle to realtime programming due to the potential for unpredictable latencies
introduced by the garbage collector. Though conventional collectors still have these
drawbacks, there are now realtime collectors that can be used for hard realtime
application. Still, the RTSJ provides an alternative to garbage collection for systems
which require it, either because they do not have a garbage collector or deterministic
garbage collector, or require heap partitioning for some other reason. Extensions
to the memory model, which support memory management in a manner that does
not interfere with the ability of realtime code to provide deterministic behavior,
are provided to support these alternatives. This goal is accomplished by providing
memory areas for the allocation of objects outside of the garbage-collected heap for
both short-lived and long-lived objects. In order to provide additional separation
between the garbage collector and schedulables which do not require its services, a
schedulable can be marked to indicate that it never accesses the heap.

2.5.1 Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an
area of memory that may be used for allocating objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity
of the heap.

There are four basic types of memory areas:

1. Heap memory represents an area of memory that is the heap. The RTSJ does
not change the determinant of lifetime of objects on the heap. The lifetime is
still determined by visibility.

2. Immortal memory represents an area of memory containing objects that may
be referenced without exception or garbage collection delay by any schedul-
able, specifically including realtime threads and asynchronous event handlers
configured to not have access to the heap.

3. Scoped memory provides a mechanism for managing objects that have a lifetime
defined by their scope. It is akin to, but more general than, allocating objects
on the thread stack.

4. Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that
has substantially faster access.

RTSJ 2.0 (Final Draft) 15

2 QOwverview

2.5.2 Heap Memory

Heap memory is the memory area used by Java by default. It is garbage collected
and the access time to objects in this area are not guaranteed unless the implemen-
tation supports realtime garbage collection. The RTSJ, as with conventional Java,
supports only one Heap in a system. Multiple heaps are only practical in one of two
configurations: the heaps are completely independent of one another or there are
subsidiary heaps from which a program may not store references in the main heap.
In other words, the subsidiary heaps can reference the main heap but not vice versa.
Currently, the RTSJ does not address these cases.

2.5.3 Immortal Memory

ImmortalMemory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in ImmortalMemory are always available
to extraheap threads and asynchronous event handlers without the possibility of a
delay for garbage collection.

2.5.4 Scoped Memory

The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope.
A scope may be entered explicitly, or it can be attached to a schedulable which will
effectively enter the scope before it executes the object’s run() method.

The contents of a scoped memory are discarded when no object in the scope can
be accessed. This is done by a technique similar to reference counting the scope.
A conforming implementation might maintain a count of the number of external
references to each memory area. The reference count for a ScopedMemory area would
be increased by entering a new scope through the enter () method of MemoryArea,
by the creation of a schedulable using the particular ScopedMemory area, or by the
opening of an inner scope. The reference count for a ScopedMemory area would be
decreased when returning from the enter () method, when the schedulable using the
ScopedMemory terminates, or when an inner scope returns from its enter () method.
When the count drops to zero, the finalize method for each object in the memory
would be executed to completion. Reuse of the scope is blocked until finalization is
complete.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again taken
from that scope.

Because of the lifetimes of scoped objects, it is necessary to limit the references
to scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of an
object in either the heap or the immortal area. A reference to a scoped object may
only be assigned into the same scope or into an inner scope. The virtual machine

16 RTSJ 2.0 (Final Draft)

Device Access and Raw Memory 2.6

must detect illegal assignment attempts and must throw an appropriate exception
when they occur.

For cases where the usage of memory does not follow a stack discipline, in
particular code that uses the producer-consumer pattern, a special variant of scoped
memory is provided. This variant PinnableMemory has the same semantics as
LTMemory except that a task can “pin” the memory, thereby keeping it open, even
when no task is in the area. One task can fill the memory, put a reference in its
portal, and then pass it on to another task to consume the data therein. Thus one
does not have to have a dummy task to hold a pinned area open while it is passed
from producer to consumer.

The flexibility provided in choice of scoped memory types enables the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

2.5.5 Physical Memory Areas

In many cases, systems needing the predictable execution of the RTSJ will also need
to access various kinds of memory at particular addresses for performance or other
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. The PhysicalMemoryRegion
and PhysicalMemoryFactory classes provide the programmer this flexibility. The
programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

2.5.6 Budgeted Allocation

The RTSJ also provides limited support for providing memory allocation budgets
for schedulables using memory areas. Maximum memory area consumption and
maximum allocation rates for individual schedulable objects may be specified when
they are created.

2.6 Device Access and Raw Memory

The RTSJ defines classes for programmers wishing to directly access physical memory
from code written in the Java language. The RawMemory<Size> types, where <Size>
is one of Byte, Short, Long, Float, or Double, define methods that enable the
programmer to construct an object that represents a vector of consecutive positions
in memory where the Size represents a primitive numerical data type, i.e., byte,
short, int, long, float, and double repectively. Access to the physical memory is then
accomplished through get<Size>() and set<Size>() methods of that object. No
semantics other than the set<Size>() and get<Size>() methods are implied. On
the other hand, the PhysicalMemoryRegion and PhysicalMemoryFactory classes
enable programmers to construct an object that represents a range of physical
memory addresses. When this object is used as a MemoryArea other objects can be

RTSJ 2.0 (Final Draft) 17

2 QOwverview

constructed in the physical memory using the new keyword as appropriate. Factories
can be used to create the desired type of both physical and raw memory.

2.6.1 Raw Memory Access

An instance of RawMemory models a range of physical memory locations as a fixed
sequence of elements of a given size. The elements correspond to Java primitive
types. For objects that access more than a single physical address, elements can be
accessed through offsets from the base, where the offset is measured in multiples of
the element size, not necessarily the byte offset in memory.

The RawMemory interface enables a realtime program to implement device drivers,
memory-mapped registers, I/O space mapped registers, flash memory, battery-backed
RAM, and similar low-level hardware.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

2.7 System Options

POSIX defines some convenient interfaces for interacting with the system. These
interactions include catching keyboard interrupts, user-to-process signaling, and
interprocess signaling. Many realtime operating systems support this POSIX signal
interface. For this reason, the RTSJ provides a POSIX signal interface. Though many
of the features POSIX signals provide are also available on most other operating
systems, the specification does not require the POSIX signal interface to be emulated
on these other platforms. Thus they are optional in the sense that they are only
required on systems that directly support POSIX signals.

2.8 Resource Enforcement

Since the Java language and runtime provide support for dynamic code loading,
additional safeguards are necessary for using those features with realtime scheduling.
It is quite easy to lock up a system with improperly design or implemented code that
uses run to completion semantics that is provided by this specification. It is also more
difficult to properly dimension a system that dynamically loads code. Therefore, an
API for resource enforcement is provided for building robust frameworks for dynamic
realtime systems.

2.9 Exceptions

Aside from several new exceptions, the RTSJ provides a new interface for using
exceptions without creating ephemeral objects and some new treatment of exceptions
surrounding asynchronous transfer of control.

18 RTSJ 2.0 (Final Draft)

Summary 2.10

Using exceptions is resource intensive, since a new exception is allocated for each
throw. This is particularly a problem for scoped memory, since scopes may need to
be sized much larger than otherwise necessary to hold exceptions and their stack
traces. Additionally, the information they contain cannot be propagated beyond the
scope in which they are allocated. To better support scoped, immortal, and physical
memory, a new class of throwable has been included: StaticThrowable. Exceptions
and Errors which implement this interface are not thrown in the usual manner, but
with a style that does not require memory to be allocated at all.

Asynchronous transfer of control can cause the exception that triggered it to be
propagated even when it is caught but the underlying interrupt is not cleared. The
system rethrows the exception once the catch is finished. This is necessary since
the Java exception hierarchy is poorly designed: there is no common base class for
checked exceptions, so application code often contains a catch for Exception when
only checked exceptions need to be caught. Even the JVM specification wording
is awkward on this point, where a checked exception is an exception that is not a
subclass of RuntimeException and an error is a throwable that is not a subclass of
Exception.

2.10 Summary

The RTSJ refines the semantics of threads, scheduling, synchronization, memory
management, and exceptions and adds features to support realtime threads, realtime
scheduling, configuring synchronization, handling asynchrony, representing time,
clocks and timers, additional methods for memory management, device access and
raw memory, system options. These features and semantic refinements to the Java
language and virtual machine have been outlined above, but the description does not
constitute a definition for them. In other words, it is not normative. The normative
chapters follow.

RTSJ 2.0 (Final Draft) 19

2 QOwverview

20 RTSJ 2.0 (Final Draft)

Chapter 3

General Requirements

The RTSJ is both an Application Programmer Interface (API) and a refinement of
the semantics of the Java virtual machine. Both aspects are necessary to produce
a programming environment conducive to programming realtime systems. Most
realtime systems require features that go beyond simply being able to react within a
defined time bounds, they must also respond to something and take action thereon.
Therefore, the ability to interact with the external environment is a necessary part
of a realtime specification.

There are many applications that can benefit from the API and semantic re-
finements of the Java runtime environment that have been described above. Not
every application requires all parts, so some flexibility of implementation is neces-
sary. Therefore the RTSJ is divided into a core package and three optional packages.
Furthermore, it also provides for different usage modes to support both development
and deployment.

Finally, the vast majority of realtime systems are also embedded systems. The
constraints of such system must also be considered. The specification begins with
the overall requirements of these concerns.

3.1 Definitions

Code — Program text written in the Java programming language.

Java Language — A programming language defined through the Java Community
Process.

Heap — An area of memory for allocating data structures (objects) defined by the
Java Language.

Extraheap Memory — An area of memory for allocating data structures (objects)
other than the heap defined by the Java Language.

Thread — An instance of the java.lang.Thread class.

Realtime Thread — An instance of the javax.realtime.RealtimeThread class.

Java Thread — An instance of java.lang. Thread class, but does not extend the
javax.realtime.RealtimeThread class.

Heapless Realtime Thread — An instance of the javax.realtime.Realtime-
Thread class that must not access the heap.

Event Handler — An instance of the javax.realtime.AsyncBaseEventHandler

21

3 General Requirements

class.

Schedulable — Any object that is of type Schedulable, and is recognized as a
dispatchable entity by the required schedulers. The required schedulers’ set
of schedulables comprises instances of RealtimeThread and AsyncBaseEvent-
Handler. Other schedulers may support a different set of schedulables, but
this specification only defines the behavior of the required schedulers so the
term schedulable should be understood as “schedulable by the base scheduler.”

Task — Any object that represents computation, including schedulables and Java
threads and instances of Schedulable.

Garbage Collection — A processes that reclaims memory on the heap that is no
longer reachable by the application program. It may be accomplished through
a dedicated set of threads or be distributed throughout the application.

3.2 Semantics

This specification is a contract between the specification implementer and the user
who writes a program to run on an implementation. To be able to support both
implementation and use, many chapters provide additional rationale to help both
the implementer and the user understand the intention behind the normative text.
The remainder of this specification, including this chapter, is normative, except for
the introductory text in each chapter and the sections named Rationale.

3.2.1 Base Requirements

The base requirements of this specification are as follows.

1. Except as specifically required by this specification, any implementation shall
fully conform to a Java platform configuration.

2. Any implementation of this specification shall implement all classes and methods
in the base module of this specification.

3. Except as noted in this chapter, all classes and methods in an implemented
module shall be implemented.

4. The javax.realtime package and its subpackages shall contain no public or
protected classes or methods not included in this specification.

5. A realtime JVM implementation shall not be implemented in a way that permits
unbounded priority inversion in any scheduling interaction it implements.

6. All methods defined under javax.realtime can safely be used concurrently
by multiple threads unless otherwise documented.

7. Static final values, as found in AperiodicParameters, SporadicParameters,
RealtimeSystem, and PriorityScheduler, shall be implemented such that
their values cannot be resolved by a conformant Java compiler (Java source to
byte code).

Many aspects of this specification set a minimum requirement, but permit latitude
in its implementation. For instance, the required priority scheduler requires at least
28 consecutively numbered realtime priorities. It does not, however, specify the
numeric values of the maximum and minimum realtime priorities. Implementations

22 RTSJ 2.0 (Final Draft)

Semantics 3.2

are encouraged to offer as many realtime priority levels immediately above the
conventional Java priorities as they can support.

Except where otherwise specified, when this specification requires object creation,
the object is created in the current allocation context.

3.2.2 Modules

The original RTSJ specification was conceived, with the exception of some optional
features, as a monolith specification. This has inhibited the adoption of the RTSJ
beyond the hard realtime community, because some of the features were considered
to have an overly negative impact on overall JVM performance. Version 2.0 addresses
this by breaking the specification into modules.

Modules provide a means of grouping related functionality together in a way
that promotes maximal adoption for various implementation classes. A conventional
JVM may simply implement the Core Module API, without providing any realtime
guarantees at all, thereby providing programmers with the benefits of features such
as asynchronous event programming as an alternative to conventional threading. A
hard realtime implementation could implement all modules to provide the maximal
flexibility and functionality to the realtime programmer. Both would benefit from
easier migration of code to realtime systems.

Every RTSJ implementation shall provide the Core Module functionality, but
all other modules are optional. The optional modules are the Device Module, the
Alternative Memory Areas Module and the POSIX Module. In addition, there are a
couple of optional features as well. This gives the implementers some choice over
which modules and features to include and which not.

3.2.2.1 Core Module

The Core Module adds the concepts of processor affinity, threads with realtime
scheduling, and asynchronous event handling. This includes the notion of executing
code at a given time interval, providing a much more stable response than using
sleep in a loop. These features should have no impact on the overall performance
of a system that implements them, but enrich the programming modules available
to the programmer. The classes and interfaces required in this module are all in
package javax.realtime and are listed below.

e AbsoluteTime (Section 9.3.1.1)

e ActiveEvent (Section 8.3.1.1)

« ActiveEventDispatcher (Section 8.3.2.1)

o Affinity (Section 6.3.3.1)

o AperiodicParameters (Section 6.3.3.2)

» AsyncBaseEvent (Section 8.3.2.2)

» AsyncBaseEvent (Section 8.3.2.2)

o AsyncBaseEventHandler (Section 8.3.2.3)

» AsyncBaseEventHandler (Section 8.3.2.3)

» AsyncEvent (Section 8.3.2.4)

o AsyncEventHandler (Section 8.3.2.5)

o AsyncLongEvent (Section 8.3.2.6)

RTSJ 2.0 (Final Draft) 23

3 General Requirements

24

AsyncLongEventHandler (Section 8.3.2.7)
AsyncObjectEvent (Section 8.3.2.8)
AsyncObjectEventHandler (Section 8.3.2.9)
BackgroundParameters (Section 6.3.3.3)
BoundAsyncEventHandler (Section 8.3.2.10)
BoundAsyncLongEventHandler (Section 8.3.2.11)
BoundAsyncObjectEventHandler (Section 8.3.2.12)
BoundSchedulable (Section 6.3.1.1)
ConfigurationParameters (Section 5.3.2.1)
EnclosedType (Section 11.3.1.1)
FirstInFirstOutParameters (Section 6.3.3.4)
FirstInFirstOutReleaseRunner (Section 8.3.2.13)
FirstInFirstOutScheduler (Section 6.3.3.5)
GarbageCollector (Section 16.2.2.1)
HeapMemory (Section 11.3.2.1)
HighResolutionTime (Section 9.3.1.2)
ImmortalMemory (Section 11.3.2.2)
MemoryArea (Section 11.3.2.3)
MemoryParameters (Section 11.3.2.4)
MinimumInterarrivalPolicy (Section 6.3.2.1)
MonitorControl (Section 7.3.1.1)
PerennialMemory (Section 11.3.2.5)
PeriodicParameters (Section 6.3.3.6)
PhasingPolicy (Section 5.3.1.1)
PriorityCeilingEmulation (Section 7.3.1.2)
PriorityInheritance (Section 7.3.1.3)
PriorityParameters (Section 6.3.3.7)
PriorityScheduler (Section 6.3.3.8)
QueueOverflowPolicy (Section 6.3.2.2)
RealtimePermission (Section 16.2.2.3)
RealtimeSecurity (Section B.2.2.33)
RealtimeSystem (Section 16.2.2.4)
RealtimeThread (Section 5.3.2.2)
RealtimeThreadGroup (Section 6.3.3.9)
RelativeTime (Section 9.3.1.3)

Releasable (Section 8.3.1.2)
ReleaseParameters (Section 6.3.3.10)
ReleaseRunner (Section 8.3.2.14)

RTSJModule (Section 16.2.1.1)

Schedulable (Section 6.3.1.2)

Scheduler (Section 6.3.3.11)
SchedulingParameters (Section 6.3.3.12)
SchedulingPermission (Section 16.2.2.5)
SizeEstimator (Section 11.3.2.6)
SporadicParameters (Section 6.3.3.13)
Subsumable (Section 8.3.1.4)

RTSJ 2.0 (Final Draft)

Semantics 3.2

All throwables defined in the RTSJ are also in the javax.realtime package:

TaskPermission (Section 16.2.2.6)
TimePermission (Section 16.2.2.7)
WaitFreeReadQueue (Section 7.3.1.4)
WaitFreeWriteQueue (Section 7.3.1.5)

AlignmentError (Section 17.2.3.1)
ArrivalTimeQueueOverflowException (Section 17.2.3.2)
BackingStoreAllocationException (Section 17.2.3.3)
CeilingViolationException (Section 17.2.3.4)
ConstructorCheckedException (Section 17.2.3.5)
DeregistrationException (Section 17.2.3.6)
EventQueueOverflowException (Section 17.2.3.7)
ForEachTerminationException (Section 17.2.3.8)
IllegalAssignmentError (Section 17.2.3.9)
IllegalTaskStateException (Section 17.2.3.10)
InaccessibleAreaException (Section 17.2.3.11)
LateStartException (Section 17.2.3.12)
MemoryAccessError (Section 17.2.3.14)
MemoryInUseException (Section 17.2.3.15)
MemoryScopeException (Section 17.2.3.16)
MemoryTypeConflictException (Section 17.2.3.17)
MITViolationException (Section 17.2.3.13)
OffsetOutOfBoundsException (Section 17.2.3.18)
POSIXInvalidSignalException (Section 17.2.3.19)
POSIXInvalidTargetException (Section 17.2.3.20)
POSIXSignalPermissionException (Section 17.2.3.21)
ProcessorAffinityException (Section 17.2.3.22)
RangeOutOfBoundsException (Section 17.2.3.23)
RegistrationException (Section 17.2.3.24)
ResourcelimitError (Section 17.2.3.25)
ScopedCycleException (Section 17.2.3.26)
SizeOut0fBoundsException (Section 17.2.3.27)
StaticCheckedException (Section 17.2.3.28)
StaticError (Section 17.2.3.29)
StaticIllegalArgumentException (Section 17.2.3.30)
StaticIllegalStateException (Section 17.2.3.31)
StaticOutOfMemoryError (Section 17.2.3.32)
StaticRuntimeException (Section 17.2.3.33)
StaticSecurityException (Section 17.2.3.34)
StaticThrowable (Section 17.2.2.1)
StaticThrowableStorage (Section 17.2.3.35)
StaticUnsupportedOperationException (Section 17.2.3.36)
ThrowBoundaryError (Section 17.2.3.37)
UninitializedStateException (Section 17.2.3.38)
UnsupportedRawMemoryRegionException (Section 17.2.3.39)

RTSJ 2.0 (Final Draft)

25

3 General Requirements

3.2.2.2 Alternative Memory Areas Module

The Alternative Memory Areas Module provides an alternative to a single heap with
garbage collection model for memory management. Most of the facilities are centered
around providing an alternative to garbage collection, but facilities for providing
what memory to use for Java objects is also addressed. The classes required in this
module are all in package javax.realtime.memory and are listed below.

» ClassAllocation (Section 11.4.1.1)

e LTMemory (Section 11.4.3.1)

e MemoryAreaType (Section 11.4.2.1)

« PinnableMemory (Section 11.4.3.2)

» ScopedConfigurationParameters (Section 11.4.3.3)

e ScopedMemory (Section 11.4.3.4)

o ScopedMemoryParameters (Section 11.4.3.5)

« StackedMemory (Section 11.4.3.6)

3.2.2.3 Control Module

Conventional Java provided a single exception for asynchronous control flow change:
the ThreadDeath error. This is thrown when Thread.stop() is called. Unfortunately,
throwing ThreadDeath is not thread safe, so it has been deprecated. This module
provides an alternative that is thread safe. It is optional because support for this
module requires significant changes to the VM. The classes required are all in the
package javax.realtime.control and are listed below.

 AsynchronousControlGroup (Section 12.3.2.1)

o AsynchronouslyInterruptedException (Section 12.3.2.2)

o Interruptible (Section 12.3.1.1)

» Timed (Section 12.3.2.3)

3.2.2.4 Device Module

The Device Module provides a low level interface for interacting with the real world.
Though realtime control systems need this kind of interaction, other systems can
benefit from it as well. Data collection, that is not time critical, is a good example.
For instance, monitoring the temperature or humidity in a room could be done easily
with off-the-self hardware using this module. The classes required in this module are
all in the package javax.realtime.device and are listed below.

 Happening (Section 13.3.2.1)

o HappeningDispatcher (Section 13.3.2.2)

» RawByte (Section 13.3.1.1)

» RawByteReader (Section 13.3.1.2)

o RawByteWriter (Section 13.3.1.3)

« RawDouble (Section 13.3.1.4)

» RawDoubleReader (Section 13.3.1.5)

» RawDoubleWriter (Section 13.3.1.6)

e RawFloat (Section 13.3.1.7)

» RawFloatReader (Section 13.3.1.8)

26 RTSJ 2.0 (Final Draft)

Semantics 3.2

e RawFloatWriter (Section 13.3.1.9)

e RawInt (Section 13.3.1.10)

« RawIntReader (Section 13.3.1.11)

e RawlntWriter (Section 13.3.1.12)

» RawLong (Section 13.3.1.13)

» RawLongReader (Section 13.3.1.14)

» RawLongWriter (Section 13.3.1.15)

« RawlMemory (Section 13.3.1.16)

» RawMemoryFactory (Section 13.3.2.3)
» RawMemoryRegion (Section 13.3.2.4)
» RawMemoryRegionFactory (Section 13.3.1.17)
« RawShort (Section 13.3.1.18)

» RawShortReader (Section 13.3.1.19)
» RawShortWriter (Section 13.3.1.20)

3.2.2.5 POSIX module

The POSIX module provides access to functionality particular to POSIX systems.
In particular, it addresses POSIX signals and POSIX realtime signals. This module
is optional, but an implementation of this standard on a POSIX platform should
provide it. Implementations on platforms that are not POSIX compliant may provide
it. The classes in this module are in the package javax.realtime.posix and are
listed below.

e RealtimeSignal (Section 14.3.1.1)

e RealtimeSignalDispatcher (Section 14.3.1.2)
o Signal (Section 14.3.1.3)

» SignalDispatcher (Section 14.3.1.4)

3.2.2.6 Resource Enforcement

The Resource Enforcement Module provides API for limiting the amount of a given
resource can be used by a given group of tasks. The specification supports managing
CPU and memory resources. It takes advantage of an extended thread group concept
provided below as an organizational feature for resource management. In combination
with class loaders and security management, one has powerful tools for building a
robust dynamic realtime system. This module is also optional.

» BackingStoreConstraint (Section 15.3.1.1)

« ConstraintExceededException (Section 15.3.1.2)
» HeapConstraint (Section 15.3.1.3)

o ImmortalConstraint (Section 15.3.1.4)

o ProcessingConstraint (Section 15.3.1.5)

» ResourceConstraint (Section 15.3.1.6)

« ThreadConstraint (Section 15.3.1.7)

RTSJ 2.0 (Final Draft) 27

3 General Requirements

3.2.3 Optional Features

Even with modules, it is difficult to eliminate all optional features. These features
are either not easy to implement on all platforms or have the potential to cause
a significant performance overhead. Therefore, an application cannot depend on
them to be present in every implementation. However, if an optional facility is
implemented, the application may rely on it to behave as specified here. Those
extensions are illustrated in Table 3.1.

Table 3.1: RTSJ Options

Allocation-rate enforcement on | Enables the application to limit the rate at which
heap allocation a schedulable creates objects in the heap.
Interrupt service routine Provides first level interrupt processing in Java.

In implementations where heap allocation rate enforcement is supported, it shall
be implemented as specified. If heap allocation rate enforcement is not supported,
the allocation rate attribute of MemoryParameters shall be checked for validity but
otherwise ignored by the implementation.

Extensions to this specification are allowed, but shall not require changes to the
public interfaces defined in the javax.realtime package tree in particular and the
java and javax package trees in general.

3.2.4 Deprecated Classes

Classes and methods that have been deprecated as of this specification are not part of
any module, but may be implemented by a full RTSJ implementation. The following
classes are deprecated:

o AsynchronouslyInterruptedException (Section B.2.2.7)

e DuplicateFilterException (Section B.2.2.9)

o ImmortalPhysicalMemory (Section B.2.2.12)

» ImportanceParameters (Section B.2.2.13)

« Interruptible (Section B.2.1.1)

e LTMemory (Section B.2.2.15)

o LTPhysicalMemory (Section B.2.2.16)

» NoHeapRealtimeThread (Section B.2.2.22)

» PhysicalMemoryManager (Section B.2.2.26)

o PhysicalMemoryTypeFilter (Section B.2.1.2)

« POSIXSignalHandler (Section B.2.2.24)

» ProcessingGroupParameters (Section B.2.2.29)

e RationalTime (Section B.2.2.30)

» RawMemoryAccess (Section B.2.2.31)

« RawMemoryFloatAccess (Section B.2.2.32)

» ScopedMemory (Section B.2.2.41)

« Timed (Section B.2.2.45)

o UnknownHappeningException (Section B.2.2.46)

o UnsupportedPhysicalMemoryException (Section B.2.2.47)

28 RTSJ 2.0 (Final Draft)

Semantics 3.2

« VTMemory (Section B.2.2.48)
e VTPhysicalMemory (Section B.2.2.49)
They are documented fully in Chapter B.

3.2.5 Implementation types Allowed

As described in Section 3.2.2, the RTSJ now has modules. Every implementation,
except one supporting Safety Critical Java, must implement the Core module.
Each module provided by an implementation must be provided in full. None of the
classes of an unimplemented module should be present. Only an implementation
of this specification exclusively used for supporting Safety Critical Java may
subset classes and packages herein, but must implement the methods and classes
defined in that specification'.

3.2.5.1 Realtime Deployment Implementation

A realtime deployment implementation must support all semantics described herein
necessary for deterministic programming. In addition to implementing the core
module, a realtime deployment implementation must have a realtime garbage collector
or implement the alternative memory areas module. All other modules are optional.

The minimum scheduling semantics that must be supported in all implementations
of the RTSJ are fixed-priority preemptive scheduling with support for at least 28
unique priority levels?. Fixed priority means that the system does not change the
priority of any Schedulable except, temporarily, for priority inversion avoidance.
Priority change is under control of the application.

What the RTSJ precludes by this statement is scheduling algorithms for realtime
priorities which change thread priorities according to policies for optimizing through-
put. An implementation may not increase the priority of a thread that has been
receiving few processor cycles because of higher priority threads (aging) or other
so-called fair scheduling algorithms. Fair scheduling operations are also prohibited.
These types of algorithms are reserved for conventional Java thread priorities. This
does not prohibit an application from implementing other realtime schedulers, such
as earliest deadline first, which use underlying OS priorities to support an application
meeting its deadlines.

The 28 priority levels are required to be unique to preclude implementations from
using fewer priority levels of underlying systems to implement the required 28 by
simplistic algorithms (such as lumping four RTSJ priorities into seven buckets for an
underlying system that only supports seven priority levels). It is sufficient for systems
with fewer than 28 priority levels to use more sophisticated algorithms to implement
the required 28 unique levels as long as Schedulable behave as though there were
at least 28 unique levels. (e.g. if there were 28 RealtimeThreads (t1, ..., tag) with
priorities (py, ..., pag), respectively, where the value of p; was the highest priority and
the value of py the next highest priority, etc., then for all executions of threads t;

!The Safety Critical Java has its own module (package) that extends APIs supported by
the RTSJ, but all of its realtime functionality are implemented using RTSJ classes.
2This does not mean that each deployment must have all 28 priorities active

RTSJ 2.0 (Final Draft) 29

3 General Requirements

through tog thread t; would always execute in preference to threads to, ..., tog and
thread t, would always execute in preference to threads ts, ..., tsg, etc.)

The minimum synchronization semantics that must be supported in all deployment
implementations of the RTSJ are detailed in the section on synchronization below
and repeated here. All deployment implementations of the RTSJ must provide an
implementation of the synchronized primitive with default behavior that ensures
that there is no unbounded priority inversion. Furthermore, this must apply to code
if it is run within the implementation as well as to schedulables. Both the priority
inheritance and the priority ceiling emulation protocols must be implemented, but
priority inheritance is the default.

All instances of Schedulable waiting to acquire a resource must be queued in
priority order. This applies to the processor as well as to synchronized blocks. When
schedulables with the same exact priority are possible under the active scheduling
policy, schedulables with the same priority are queued in FIFO order. Note that
these requirements apply only to the required scheduling policy and hence use the
specific term "priority". In particular,

1. schedulables waiting to enter synchronized blocks are granted access to the

synchronized block in priority order;

2. a blocked schedulable that becomes ready to run is given access to the processor
in priority order;

3. a schedulable whose execution eligibility is explicitly set by itself or another
schedulable is given access to the processor in priority order;

4. a schedulable that performs a yield() will be given access to the processor
after all other schedulables waiting at the same priority;

5. however, schedulables that are preempted in favor of a schedulable with higher
priority may be given access to the processor at any time as determined
by a particular implementation. The implementation is required to provide
documentation stating exactly the algorithm used for granting such access.

Other realtime schedulers must provide and document similar algorithms to expe-
dited schedulables with higher execution eligibility over those with lower execution
eligibility.

The RTSJ does not require any particular garbage collection algorithm; however,
every deployment implementation must either implement the alternate memory
area module or have a realtime garbage collection. In the later case, the realtime
limitations must be documented. All implementations of the RTSJ must support the
class GarbageCollector and implement all of its methods.

Notwithstanding the above, a program that uses the RTSJ and is deployed as
an executable, so that it does not provide general access to the virtual machine,
but solely runs that program code, need only include the RTSJ methods and classes
needed by the application.

3.2.5.2 Simulation Implementation

An implementation that chooses not to provide realtime guarantees, is termed a
simulation implementation. Such an implementation does not need to provide the
realtime characteristic described above, but does need to at least provide all the
APIs of the core module. A simulation implementation can be a production system,

30 RTSJ 2.0 (Final Draft)

Required Documentation 3.3

but not for realtime applications. This enables a conventional JVM to make the base
APIs available to a wider audience without changing its performance characteristics.

The following semantics are optional for an RTSJ implementation designed and

licensed exclusively as a development tool.

1. The priority scheduler need not support fixed-priority preemptive scheduling or
the priority inversion avoidance algorithms. This does not excuse an implemen-
tation from fully supporting the relevant APIs. It only reduces the required
behavior of the underlying scheduler to the level of the scheduler in the Java
specification extended to at least 28 priorities.

2. No semantics constraining timing beyond the requirements of the Java spec-
ifications need be supported. Specifically, garbage collection may delay any
thread without bound and any delay in delivering asynchronously interrupted
exceptions (AIE) is permissible including never delivering the exception. Note,
however, that if any AIE other than the generic AIE is delivered, it shall
meet the AIE semantics, and all heap-memory-related semantics other than
preemption remain fully in effect. Further, relaxed timing does not imply
relaxed sequencing. For instance, semantics for scoped memory shall be fully
implemented.

3. The RTSJ semantics that alter standard Java method behavior, such as the
modified semantics for Thread.setPriority and Thread.interrupt, are not
required for a development tool, but such deviations from the RTSJ shall be
documented, and the implementation shall be able to generate a runtime
warning each time one of these methods deviates from standard RTSJ behavior.

These relaxed requirements set a floor for RTSJ development system tool imple-

mentations. A development tool may choose to implement semantics that are not
required.

3.3 Required Documentation

In order to properly engineer a realtime system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially important
for operations that are performed by the runtime system, largely hidden from the
programmer. An example of this is the maximum expected latency before the garbage
collector can be interrupted.

The RTSJ does not require specific performance or latency numbers to be matched.
Rather, to be conformant to this specification, an implementation must provide
documentation regarding the expected behavior of particular mechanisms. The
mechanisms requiring such documentation, and the specific data to be provided, will
be detailed in the class and method definitions.

Each implementation of the RTSJ is required to provide documentation for several
behaviors.

1. If schedulers other than the required first-in-first-out (FIFO) and round robin
(RR) schedulers are available to applications, the behavior of these schedulers
and their interaction with each other and the required schedulers as detailed
in Chapter 6, Scheduling, shall be documented.

RTSJ 2.0 (Final Draft) 31

3 General Requirements

10.

11.

32

(a) The documentation must define how its order of execution eligibility
relates to that of the priority schedulers, where the order of execution
eligibility of a priority scheduler is the priority order.

(b) The list of classes whose instances constitute schedulables for the scheduler,
unless that list is the same as the list of schedulables for the required
schedulers, shall be included.

(c) If there are restrictions on use of the scheduler from a context without
heap access, such restrictions shall be documented as well.

A scheduler that cannot place a schedulable at the front of the queue for its
active priority when it is preempted by a higher-priority schedulable must
document such a deviation from the specification.

An implementation is required to document the granularity at which the current
CPU consumption is updated for cost monitoring and cost enforcement, when
the later is implemented.

The implementation shall fully document the behavior of any subclasses of
GarbageCollector.

An implementation that provides any MonitorControl subclasses not detailed
in this specification shall document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the new
policy.

If on losing “boosted” priority due to a priority inversion avoidance algorithm,
the schedulable is not placed at the front of its new queue, the implementation
shall document the queuing behavior.

For any available scheduler other than the required schedulers, an implementa-
tion shall document how, if at all, the semantics of synchronization differ from
the rules defined for the default PriorityInheritance monitor control policy.

(a) It shall supply documentation for the behavior of the new scheduler with
priority inheritance (and, if it is supported, priority ceiling emulation
protocol) equivalent to the semantics for the base priority scheduler found
in the Synchronization chapter.

(b) If there are restrictions on use of the scheduler from an extraheap context,
the documentation shall detail the effect of these restrictions for each
RTSJ APL

The worst-case response interval from the firing of an AsyncEvent, due to a
bound happening, to releasing an associated AsyncEventHandler, assuming
no higher-priority schedulables are runnable, shall be documented for at least
one reference architecture.

The interval between firing an AsynchronouslyInterruptedException at an
ATC-enabled thread and first delivery of that exception (assuming no higher-
priority schedulables are runnable) shall be documented for at least one reference
architecture.

If cost enforcement is supported and the implementation assigns the cost of
running finalizers for objects in scoped memory to any schedulable other than
the one that caused the scope’s reference count to drop to zero by leaving the
scope, the rules for assigning the cost shall be documented.

If hard cost enforcement is supported and enforcement (blocked-by-cost-overrun)

RTSJ 2.0 (Final Draft)

Rationale 3.4

can be delayed beyond the enforcement time granularity, the maximum such
delay shall be documented.

12. If the implementation of RealtimeSecurity is more restrictive than the re-
quired implementation, or has run-time configuration options, those features
shall be documented.

13. For each supported clock, the documentation shall specify whether the res-
olution is settable, and if it is settable the documentation shall indicate the
supported values.

14. If an implementation includes any clocks other than the required realtime clock,
their documentation shall indicate in what contexts those clocks can be used.
If they cannot be used in extraheap context, the documentation shall detail the
consequences of passing the clock, or a time that uses the clock to a heapless
schedulable.

3.4 Rationale

The embedded market, especially for safety critical applications, is quite sensitive
to including code that is not needed by an application. Furthermore, different
application domains have differing needs on API. Flexibility is needed to ensure that
these diverse domains and requirements are met. Still, it is important to ensure
that when a given function is needed, it is included as defined herein. It is also
important that an open virtual machine deployment has a well-defined API set. This
has required moving a few classes into a new package, so that the resulting modules
will be consistent with the rules imposed by the JSR 376, the Java Platform Module
System. The above modules and deployment rules provide both this flexibility and
standardization.

RTSJ 2.0 (Final Draft) 33

3 General Requirements

34 RTSJ 2.0 (Final Draft)

Chapter 4

Realtime vs Conventional Java

Though compatibility with conventional Java (i.e., any Java runtime environments
that implement the Java Virtual Machine Specification and the Java Language
Specification but not the RTSJ) is the first concern of this specification, there are
several cases where being able to meet realtime constraints requires a tightening of
the semantics of the virtual machine and some subtle changes to the semantics of two
key classes: java.lang.Thread and java.lang.ThreadGroup. These constraints
and changes place additional requirements on scheduling, the memory model, and
memory management. The specification additionally defines both an extension to
thread for realtime scheduling and a new type of concurrent activity called an event
handler; hence, the meaning of current thread has a different interpretation than in
conventional Java. The term task is used when referring to any of these three types:
conventional Java thread, realtime thread, and event handler.

Behaviors that may be different from conventional Java or may be surprising
to developers of conventional Java applications under the RTSJ can be divided into
three categories. The first category applies to conventional Java code that was not
developed with the RTSJ in mind and does not use RTSJ features but runs under an
RTSJ implementation. The second is conventional Java code that was not developed
with the RTSJ in mind but is called by code developed for the RTSJ in an RTSJ
implementation. The final category is Java code that was developed for the RTSJ
and is being used in an RTSJ implementation.

The first category, conventional Java code running on an RTSJ implementation
but not using any RTSJ features, may encounter the following behaviors that are not
(necessarily) experienced under a conventional Java VM.

o Any object allocated in a static initializer that later becomes garbage may be

unable to be collected by the VM. (See Section 11.2.7.)

e Some Throwables, in particular those implementing StaticThrowable, which
includes StaticOutOfMemoryError, thrown by an RTSJ VM in preference to
OutOfMemoryError, have stack trace and message information which is valid
only while the Throwable is in flight and in the thread which originally threw
the Throwable. (See Section 17.1.)

The second category, conventional Java code that is running on an RTSJ imple-

mentation and in use by code that was developed for the RTSJ, may encounter the
following differences in behavior.

35

4 Realtime vs Conventional Java

e IllegalAssignmentError may be thrown in non RTSJ-aware classes when
the Alternative Memory Management module (Chapter 11) is in use. (See
Section 11.2.8.)

o Tasks in an RTSJ application might not be scheduled by a fair scheduler. The
result is that there may be thread starvation unexpected by conventional Java
applications. (See Section 6.2.1.)

e A call to Thread.getPriority() may return a priority higher than
Thread.MAX_PRIORITY. (See Section 6.3.3.11.2.)

e Methods cannot rely on any thread local information when used in conjunction
with asynchronous event handlers. This includes thread local data and calls
to Thread. currentThread (). Hence, care must be taken when using thread
identifiers to determine the identity of callers. (This is analogous to the use of
ThreadPool in conventional Java.) (See Sections 8.2.1 and 8.3.2.5.)

The third and final category comprises behaviors exhibited by code designed for
the RTSJ running on an RTSJ implementation that are departures from conventional
Java semantics or may be otherwise surprising.

e Finally clauses in asynchronously interruptible methods are not executed
during propagation of an AsynchronouslyInterruptedException. However,
synchronized code is always ATC-deferred, and therefore monitor locks are
released normally. (See Section 12.2.2.)

« Catch clauses that name AsynchronouslyInterruptedException (or its par-
ent classes) will not automatically stop the propagation of AIEs. An Asynchron-
ouslyInterruptedException must be explicitly cleared. (See Section 12.2.2.)

» Exceptions propagating into asynchronously interruptible regions of code will
be lost if an AsynchronouslyInterruptibleException is pending. (See Sec-
tion 12.2.2.)

» Subclasses of AsynchronouslyInterruptibleException indicated in the sig-
nature of a method do not indicate that the method is asynchronously inter-
ruptible. (See Section 12.2.2.)

o Catch clauses for AsynchronouslyInterruptibleException or its subclasses
in asynchronously interruptible methods will not catch an AIE. (See Sec-
tion 12.2.2.)

e A Throwable crossing a MemoryArea boundary might be transformed into
a ThrowBoundaryError, and the original exception may be lost. (See Sec-
tion 17.2.3.37 and the enter family of methods on MemoryArea.)

4.1 Definitions

Conventional Java — The language and runtime as defined by the “Java Language
Specification[4]” and “Java Virtual Machine Specification[5],” without any
realtime extensions.

Realtime Java — Conventional Java extended and refined according to this specifi-
cation for programming realtime systems.

Fair Scheduling — A method of nonrealtime scheduling which tries to ensure that
all tasks get a chance to run, thus preventing starvation. Tasks with a higher
priority get a notionally larger share of execution time than lower priority tasks.

36 RTSJ 2.0 (Final Draft)

Semantics 4.2

Tasks running at the same priority get notionally equal shares of the processor.

Happens-Before — The “Java Language Specification[4]” specifies the happens-
before relationship as “If one action happens-before another, then the first
is visible to and ordered before the second.” See the specification for the
implications of this relationship.

Priority — An indication of the relative scheduling eligibility of a task. A task with
a higher priority is scheduled before a task with a lower priority. The priority
assigned to a task is not necessarily the one used for scheduling, since priority
avoidance and cost enforcement mechanisms may transiently override it. See
Base Priority in Section 6.1 and Active Priority in Section 7.1.

Task — A conventional Java thread or an RTSJ Schedulable.

4.2 Semantics

The refinements and changes to the semantics of the Java runtime environment
and classes shall not affect the functional correctness of Java code written for a
conventional Java implementation when running on a Java runtime environment
which implements this specification. There may be changes in the relative timing
of threads, but these should not violate the conventional Java specifications. The
use of some RTSJ features with code written for a conventional Java implementation
may, however, cause unexpected behaviors. This is particularly true when using
alternate memory areas, asynchronous transfer of control, and thread local memory
in conjunction with unbound asynchronous event handlers.

4.2.1 Scheduling

How tasks are scheduled in a realtime system is quite different from what one expects
in a conventional Java virtual machine. For compatibility, this means that there
must be a domain where conventional Java threads are scheduled in a familiar way
and another domain that supports realtime scheduling. This separation is done in
part via task priority.

Tasks running with the conventional ten priorities defined in Java should be
scheduled as expected. Unfortunately, in order to ease the porting of Java to different
environments, the scheduling of conventional Java threads is underspecified in [4].
This has been resolved in practice to avoid surprising the programmer by providing
some sort of fair scheduling for these threads, i.e, scheduling that at least prevents
task starvation, but may also try to balance CPU availability across threads. For
tasks running in these priorities, an implementation of this specification shall provide
some notion of fair scheduling between tasks with priority between one and ten
inclusive.

Realtime threads and event handlers need a stronger notion of prioritization
than conventional Java threads, so this specification requires the implementation of
two priority-preemptive schedulers, one with run to completion (or next suspension
point) and one with round-robin semantics. Priorities above the conventional ten
priorities are used for these schedulers, and the interactions of the two schedulers are
well-defined. Multithreaded code that runs with the priority-preemptive scheduler

RTSJ 2.0 (Final Draft) 37

4 Realtime vs Conventional Java

(or any other realtime scheduler) is more prone to deadlock or starvation than code
run with fair scheduling. The changes to Thread and ThreadGroup are to support
this realtime scheduling.
1. The semantics of set and get methods for priority in Thread differ for realtime
threads.
2. The ThreadGroup class’s behavior differs with respect to realtime threads.
3. The behavior of the ThreadGroup-related methods in Thread differ when they
are applied to realtime threads.
Code running at realtime priorities can also starve tasks scheduled on the conventional
Java scheduler, possibly indefinitely.

4.2.1.1 Priority

The methods setPriority and getPriority in java.lang.Thread are final.
The realtime thread classes are consequently not able to override them and mod-
ify their behavior to suit the requirements of the RTSJ scheduler. To bring the
java.lang.Thread class in line with its realtime subclasses, the semantics of the
getPriority and setPriority methods must be modified.

4.2.1.1.1 Setting Priority

The setPriority method has the following additional requirements.

1. Use of Thread.setPriority() shall not affect the correctness of the priority
inversion avoidance algorithms controlled by PriorityCeilingEmulation and
PriorityInheritance. Changes to the base priority of a realtime thread as
a result of invoking Thread.setPriority() are governed by semantics from
Chapter 7 on Synchronization.

2. Conventional Java threads may not use setPriority to apply the expanded
range of priorities defined by this specification.

3. When setPriority is called on a realtime thread, that thread’s Scheduling-
Parameters are set to null and the thread is scheduled as if it were a Java
thread.

4.2.1.1.2 Getting Priority

The getPriority method has the following additional requirements.

1. When called on a conventional Java thread, its assigned priority is returned
even if it has a higher priority than what would be allowed by conventional Java.
It may be higher only when set with an instance of SchedulingParameters
through a scheduler.

2. When called on a realtime thread with null SchedulingParameters, a value
in the conventional Java priority range is returned.

3. When called on a realtime thread (t) with PriorityParameters, getPriority
behaves effectively as if it included the following code snippet:

1 ((PriorityParameters)t.getSchedulingParameters()).getPriority
O3

38 RTSJ 2.0 (Final Draft)

Semantics 4.2

4. When the scheduling parameters are of a type other than PriorityParameters,
a ClassCastException is thrown.
All supported monitor control policies must apply to Java threads as well as to all
schedulables.

4.2.1.2 Thread Groups

Conventional Java provides thread groups as a means of managing groups of threads.
Since the RTSJ provides additional classes for encapsulating control low under the
umbrella of Schedulable, it makes sense to have facilities for managing groups
of these as well. The RTSJ provides an extension of ThreadGroup for this called
RealtimeThreadGroup.

Every instance of ThreadGroup holds a reference to every member thread and
every subgroup instance of ThreadGroup, as well as a reference to its parent group.
This is problematic under the RTSJ, since realtime threads may be allocated in scoped
memory. Rather than making complicated changes to the semantics of ThreadGroup
(and, in particular, its enumerate methods), the RTSJ requires that no ThreadGroup
or Java thread is allocated in scoped memory, and that no thread allocated in
ScopedMemory is referenced by a ThreadGroup. Instances of RealtimeThreadGroup
are instead used for these purposes, and an alternative to enumerate is provided on
RealtimeThreadGroup in the form of a visitor.

Realtime thread groups, i.e., instances of RealtimeThreadGroup, a subclass of
ThreadGroup, are designed to be able to reference threads, schedulables, and other
realtime thread groups, even when they are in scoped memory. These are only
reachable using a visitor with a lambda expression. Consequently schedulables and
realtime thread groups are not part of any thread group and will hold a realtime
thread group reference as their parent thread group. This requires that the thread
group of the main thread is also a schedulable group, so that schedulables and
schedule groups can be created from the main thread.

In order for this to work in a transparent manner, the following rules must hold.

1. An instance of ThreadGroup that is not an instance of RealtimeThreadGroup
cannot contain any instances of Schedulable.

2. In an RTSJ implementation, both the ThreadGroup at the root of the Thread-
Group hierarchy and the ThreadGroup to which the initial thread belongs
must be instances of RealtimeThreadGroup.

3. Calls to RealtimeThreadGroup.enumerate (Thread[]) and RealtimeThread-
Group.enumerate(Thread[], boolean) only return Java threads.

4. Calls to RealtimeThreadGroup.enumerate(ThreadGroup[]) and Real-
timeThreadGroup.enumerate (ThreadGroup[], boolean) only return threads
groups and realtime thread groups allocated in heap and immortal memory.

5. A Java thread (not a realtime thread) that is created from a realtime thread or
bound asynchronous event handler without an explicit thread group and that
is not assigned a thread group by the security manager, inherits the realtime
thread group of its creator, when that group is allocated in heap or immortal
memory; otherwise an I1legalAssignmentError is thrown.

6. The thread group of a Java thread that is created from an unbound asynchronous
event handler without an explicit thread group and that is not assigned a

RTSJ 2.0 (Final Draft) 39

4 Realtime vs Conventional Java

thread group by the security manager, is assigned to the realtime thread group
of the handler’s dispatcher, when that dispatcher’s realtime thread group is
allocated in heap or immortal memory; otherwise an I1legalAssignmentError
is thrown.

7. A thread group cannot be created in scoped memory. The constructor shall
throw an I1legalAssignmentError.

8. Setting a maximum priority on a realtime thread group, either explicitly or
via its parent with a thread group specific method, has no influence on the
schedulables in that group.

9. Except as specified previously, realtime threads and bound asynchronous event
handlers have the same ThreadGroup membership rules as their parent Thread
class.

4.2.1.3 Current Thread

In Java, the currently executing thread can always be determined by calling the static
method Thread.currentThread (). In the RTSJ, there are two types of schedulable
entities: threads and asynchronous event handlers. The latter may be mapped
dynamically by the realtime Java virtual machine onto the underlying thread model.
The method Thread.currentThread (), when called from an unbound asynchronous
event handler, will return the thread that is being used as the current execution
engine for that event handler. The program should not rely on this being constant
for the lifetime of the program. It can rely on it being constant for the current release
of the handler (see 6.1 for the definition of a release). It is not recommended that
the program perform any operations on this underlying thread as it may have an
impact beyond that of the current event handler. This also means that thread local
memory cannot be relied on when used with unbound event handlers, because data
saved in one release may not be available in the next release.

4.2.2 InterruptedException

The specification extends the use of the InterruptedException to support asyn-
chronous transfer of control.

The interruptible methods in the standard libraries (such as Object.wait, Thread.
sleep, and Thread. join) have their contract expanded slightly such that they
will respond to interruption not only when the interrupt method is invoked on
the current thread, but also, for schedulables, when executing within a call to
ATIE.doInterruptible and that AIE is fired where AIE is an instance of the Asyn-
chronouslyInterruptedException. See Chapter 8 on Asynchrony.

4.2.3 Java Memory Model

Some aspects of the Java Memory Model must be tightened for this specification, in
particular with regards to interactions with native code or when using the Device
Module. A conforming implementation must ensure that volatile loads and stores,
raw memory operations (see 13.2.1) are ordered to be consistent with respect to native
code or hardware devices that use platform-native memory coherency protocols to

40 RTSJ 2.0 (Final Draft)

Semantics 4.2

access raw memory or raw byte buffers shared with the virtual machine. In particular,
all Java code that precedes a JNI call in the source happens-before the code executed
during the JNI call, which happens-before all Java code that follows its return.

Though not specified for conventional Java, most implementations provide explicit
fencing for JNT calls.

4.2.4 Memory Management

The specification provides for two means of managing memory: garbage collection
and special memory areas. The latter are not collected by the garbage collector.
Since memory allocated in Java is always in the heap, or at least appears to be,
the initial allocation area is the heap. Furthermore, the allocation area can only
be changed either by entering another memory area or by calling a method that
explicitly causes allocation in another area. When the alternative memory areas
module is not present, the conventional Java semantics for allocation prevails.

4.2.4.1 Memory Areas

Using a conventional class in a memory area other than a heap can result in
unexpected behavior. This is particularly the case when a method of a class is
called when the current allocation context is different from the allocation context in
which the object was created; this can lead to exceptions. In general, memory areas
other than the heap may become full much faster than expected, because objects
that are no longer referenced will not be collected automatically.

A method that allocates an object or takes an object that was created in a
different memory area and tries to assign it to a field of its associated object can fail.
For example, creating a List on the heap and adding to it an object from a scoped
memory area will most likely cause an exception. Although using other memory
areas, such as scoped memory, is useful for helping to improve determinism, its use
complicates the logic of application and library code.

On systems that support memory areas other than heap and do not support
realtime garbage collection, some global resources must be put in immortal memory.
System properties and their String values allocated during system initialization
shall be allocated in immortal memory. For such a system, class objects should also
be stored there. Though this avoids priority inversion with the garbage collector, it
can cause higher memory use than expected.

4.2.4.2 Garbage Collection

Garbage collection is an important safety feature of the Java language and runtime
environment. Unfortunately, the garbage collection process can interfere with a
realtime program’s ability to always meet its timing deadlines. This specification
provides two main means of circumventing this problem: using a realtime garbage
collector or using the memory area module as an alternative to garbage collection
for realtime code. Additionally, an implementation may ignore the problem for
an environment meant as a development system or for systems that choose not to

RTSJ 2.0 (Final Draft) 41

4 Realtime vs Conventional Java

provide realtime guarantees. In any case, an implementation must document what
realtime guarantees it gives and which methods it uses to do so.

4.2.4.3 Realtime Garbage Collections

Industrial realtime garbage collectors are available with varying approaches to
providing realtime response. Though new collectors will undoubtedly be developed,
all current ones use a variant of the mark-and-sweep algorithm. In all cases, the
collectors are incremental: realtime response is obtained by limiting how much of a
collection cycle is done each time the collector runs. Even on a multicore machine,
the garbage collector must be incremental, because it must tolerate changes to the
heap during garbage collection. Then CPU use is limited by tying the collector to
one or more cores.

4.2.4.3.1 Thread-Based Collectors

A realtime thread-based collector is an incremental garbage collector that has its
own thread of control and runs at intervals. In this case, the garbage collector needs
to be scheduled to ensure that it runs often enough and long enough at each interval
to recycle discarded objects fast enough to keep up with allocations. There should
also be some maximum time after which the garbage collector can be interrupted.

4.2.4.3.2 Allocation-Based Collectors

A realtime allocation-based garbage collector does not have its own thread of
control. Instead, some interval of garbage collection work is done at each allocation.
This work is generally a function of the size of the object being allocated. This work
becomes part of the execution time of the program. Again, there should be some
maximum time after which the garbage collector can be interrupted.

4.2.4.3.3 Alternatives to Garbage Collection

This specification provides an alternative Memory Areas Module for managing
memory without garbage collection. An implementation of this specification may
provide realtime response by requiring applications to use that module instead of
providing a realtime garbage collector. This means that all realtime threads would
have to run above the priority of the garbage collector and all communication with
conventional threads would have to use some nonblocking protocol.

4.2.4.3.4 Developer Implementation

An implementation that simply provides all the API but no realtime guarantee
is also permitted. This is useful as a development environment. Also, many of the
APIs are useful event in a conventional Java implementation.

42 RTSJ 2.0 (Final Draft)

Rationale 4.3

4.3 Rationale

The threading model of conventional Java was never meant for realtime programming.
Refinements to the virtual machine and new APIs are necessary to support the
additional requirements of applications, which have tasks that must complete in
a fixed amount of time. However, to ensure that any conventional Java program
can run on a virtual machine or runtime that implements this specification requires
careful consideration of each refinement to the Java programming model. Therefore,
conventional Java APIs and semantics have been extended, rather than replaced, to
facilitate compatibility with conventional Java runtime implementations.

RTSJ 2.0 (Final Draft) 43

4 Realtime vs Conventional Java

44 RTSJ 2.0 (Final Draft)

Chapter 5

Realtime Threads

Conventional Java provides a thread class for its tasking model. Tasks can be
run simultaneously by creating multiple threads, but they do not provide realtime
scheduling semantics. For this, the specification provides a realtime thread class.
This class provides for the creation of

 realtime threads that have more precise scheduling semantics than java.lang.-

Thread, and

o realtime threads that have no dependency on the heap.

The RealtimeThread class extends java.lang.Thread. The ReleaseParamet-
ers, SchedulingParameters, and MemoryParameters objects that can be passed to
the RealtimeThread constructor provide the temporal and processor configuration
of the thread to be communicated to the scheduler. ProcessingConstraint of
the Resource Enforcement Module in package javax.realtime.enforce provides
cost enforcement on groups of tasks. The ConfigurationParameters class defines,
among other things, the size of Java’s thread stack. The PhasingPolicy class defines
the relationship between the threads start time and its first release time when the
start time is in the past.

The RTSJ provides two types of objects that implement the Schedulable interface:
realtime threads and asynchronous event handlers. This chapter defines the facilities
that are available to realtime threads. In many cases, these functionalities are also
available to asynchronous event handlers. In particular,

o the default scheduler must support the scheduling of both realtime threads

and asynchronous event handlers;

o realtime threads and asynchronous event handlers are allowed to enter into

memory areas and consequently they have associated scope stacks; and

o the flow of control of realtime threads and asynchronous event handlers are

affected by the RTSJ asynchronous transfer of control facilities.
Where the semantics apply to both realtime threads and asynchronous event handlers,
the term schedulable will be used.

5.1 Definitions

Exception — Both a mechanism of nonlocal transfer of control and a Java object
which carried information about the cause of the control transfer.

45

5 Realtime Threads

Scheduler — A module that manages the execution of tasks, as well as detects

deadline misses and monitoring costs.

5.2 Semantics

Instances of RealtimeThread have the same semantics as conventional Java threads
except as noted below.

1.

46

Garbage collection executing in the context of a Java thread must not in itself
block execution of a schedulable with a higher execution eligibility that may
not access the heap; however, application locks work as specified even when
the lock causes synchronization between a heap-using thread and a schedulable
that may not use the heap.

Each schedulable has an attribute which indicates whether an Asynchron-
ouslyInterruptedException is pending. This attribute is set when a call
to RealtimeThread.interrupt () is made on the associated realtime thread,
when a call is made to the interrupt method in one of the family of asynchronous
event handler classes, and when an asynchronously interrupted exception’s fire
method is invoked between the time the schedulable has entered that exception’s
doInterruptible method, and before it has return from doInterruptible.
(See Chapter 8 on Asynchrony.)

A call to Schedulable.interrupt() generates the system’s generic Asyn-
chronouslyInterruptedException. (See Chapter 8 on Asynchrony.)

. The RealtimeThread.waitForNextRelease method is for use by realtime

threads that have periodic or aperiodic release parameters. In the absence of
any deadline miss or cost overrun, or an interrupt, the method returns when
the realtime thread’s next period is due or the next release happens.

In the presence of a cost overrun or a deadline miss, the behavior of waitFor-
NextRelease is governed by the thread’s scheduler.

The first release time of a realtime thread is governed by the value of any start
time in its associated ReleaseParameter object and the time at which the
RealtimeThread.start method is called and the value of any PhasingPolicy
parameter passed to it.

Instances of RealtimeThread may not be created with a thread group which
is not an instance of RealtimeThreadGroup.

System-related termination activity (such as execution of finalizers for scoped
objects in scoped memory areas that become unreferenced) triggered by termi-
nation of a realtime thread is not subject to cost enforcement or deadline miss
detection.

The scheduling of a realtime thread is governed by its SchedulingParameters
and its Scheduler unless set explicitly with method setPriority(int) in
java.lang.Thread, which causes it to be treated as a conventional java thread
until a new SchedulingParameters object is set.

RTSJ 2.0 (Final Draft)

Semantics 5.2

5.2.1 Startup Considerations

For efficient system startup, it is sometimes necessary that the Java main thread and
all internal system threads have a priority other than Thread.NORM_PRIORITY. The
core module provides a property for this. When javax.realtime.start.priority
is set, the initial and main Java threads start with the given priority; otherwise, the
default of Thread.NORM_PRIORITY is used.

RTSJ 2.0 (Final Draft) 47

5 Realtime Threads PhasingPolicy

5.3 javax.realtime

5.3.1 Enumerations

5.3.1.1 PhasingPolicy

public enum PhasingPolicy

Inheritance

java.lang.Object
java.lang. Enum<PhasingPolicy >
PhasingPolicy

Description

This class defines a set of constants that specify the supported policies for starting
a periodic thread or periodic timer, when it is started later than the assigned
absolute time. The following table specifies the effective start time, that is, the
first release time of a periodic realtime thread. The effective start time of a
periodic timer is similar; where the first firing is equivalent to the first release,
and a call to the constructor is equivalent to a call to RealtimeThread.start ().

Since RTSJ 2.0

5.3.1.1.1 Enumeration Constants

ADJUST_IMMEDIATE
public static final PhasingPolicy ADJUST_IMMEDIATE

Description

Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release one period later.

ADJUST_FORWARD
public static final PhasingPolicy ADJUST_FORWARD

Description

Indicates that a periodic thread started after the absolute time given for its start
time should be released at the next multiple of its period from its start time.

48 RTSJ 2.0 (Final Draft)

PhasingPolicy

javazx.realtime 5.3

Table 5.1: PhasingPolicy Effect on First Release of a RealtimeThread with Periodic-

Parameters
ADJUST IM-| ADJUST ADJUST STRICT
MEDIATE FORWARD BACKWARD | PHASING
RelativeTime | The time of | The time of | The time of | The time of
start method | start method | start method | start method
invocation invocation invocation invocation
plus start | plus start | plus start | plus start
time. time. time. time.
AbsoluteTime, | Release im- | All releases | The first | The start
earlier than | mediately before the | release occurs | method
call to start | and set next | time start | immediately | throws an
release time | is called are | and the next | exception.
to be at the | ignored. The | release is at

time the start
method was
invoked plus
period.

first release is
at the gstart
time plus the
smallest multi-
ple of period
whose time is

the start time
plus the small-
est multiple
of period
whose time is
after the time

is at time of
start method
invocation

is at time of
start method
invocation

is at time of
start method
invocation

after the time | start was

start was | called.

called.
AbsoluteTime, | First release is | First release is | First release is | First release is
later than call | at time passed | at time passed | at time passed | at time passed
to start to start. to start. to start. to start.
Without Time | First release | First release | First release | First release

is at time of
start method
invocation

ADJUST_ BACKWARD
public static final PhasingPolicy ADJUST_BACKWARD

Description

Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release at the next multiple of
its period from its start time.

STRICT_PHASING
public static final PhasingPolicy STRICT_PHASING

RTSJ 2.0 (Final Draft) 49

9 Realtime Threads ConfigurationParameters

Description

Indicates that a periodic thread started after the absolute time given for its start
time should throw the LateStartException exception instead of being released.

5.3.1.1.2 Methods

values

Signature
public static javax.realtime.PhasingPolicy[]
values()

Description

valueOf(String)

Signature
public static javax.realtime.PhasingPolicy
valueOf (String name)

Description

5.3.2 Classes

5.3.2.1 ConfigurationParameters

public class ConfigurationParameters

Inheritance
java.lang.Object
ConfigurationParameters

Interfaces
Cloneable
Serializable

Description

Configuration parameters provide a way to specify various implementation-
dependent parameters such as the Java stack and native stack sizes, and to
configure the statically allocated ThrowBoundaryError associated with a Sched-
ulable.

Note that these parameters are immutable.

Since RTSJ 2.0

50 RTSJ 2.0 (Final Draft)

ConfigurationParameters javaz.realtime 5.3

5.3.2.1.1 Constructors

ConfigurationParameters(int, int, int, int, int, long)
Signature
public
ConfigurationParameters(int messagelength,
int stackTraceDepth,
int classNamelLength,
int methodNameLength,
int fileNameLength,
long[] sizes)
throws StaticIllegalStateException

Description

Creates a parameter object for initializing the state of a Schedulable. The
parameters provide the data for this initialization. For RealtimeThread and
bound versions of AsyncBaseEventHandler, the stack and message buffers can
be set exactly, but for the unbound event handlers, the system cannot give any
guarentees to allow thread sharing.

Parameters
messageLength—The size of the buffer, in units of char, for storing an exception
message used by preallocated exceptions and errors thrown in the context of
an instance of Schedulable which was created with this as its configuration
parameters. The value 0 indicates that no message should be stored. The value
of -1 uses the system default and is the default when an instance of this class
is not provided.

stackTraceDepth—The number of stack trace elements, reserved for use by preallo-
cated exceptions and errors thrown in the execution context of the Schedulable
object created with these parameters. The amount of space this requires is
implementation-specific. The value 0 indicates that no stack trace should be
stored. The value of -1 uses the system default and is the default when an
instance of this class is not provided.

classNameLength—The number of characters reserved in each frame for saving the
full class name in a given stack trace frame.

methodNameLength—The number of characters reserved in each frame for saving
the method signature in a given stack trace frame.

fileNameLength—The number of characters reserved in each frame for saving the
file name in a given stack trace frame.

sizes—An array of implementation-specific values dictating memory parameters for
Schedulable objects created with these parameters, such as maximum Java and
native stack sizes. The sizes array will not be stored in the constructed object.
The default is system dependent, and indicated by setting this parameter to
null or by not providing an instance of this class.

RTSJ 2.0 (Final Draft) 51

9 Realtime Threads ConfigurationParameters

JamaicaVM: not yet used.

ConfigurationParameters(long)
Signature

public

ConfigurationParameters(long[] sizes)

Description

Same as ConfigurationParameters(int,int,int,int,int,long[]) with ar-
guments (0, 0, 0, 0, 0, sizes).

5.3.2.1.2 Methods

setDefault(ConfigurationParameters)
Signature

public static synchronized void
setDefault (ConfigurationParameters config)

Description
Set the parameters object to be used when none is provided for an instance of

Schedulable.

Parameters
config—the new default parameter object. Setting to null restores the default
values.

getDefault

Signature
public static synchronized javax.realtime.ConfigurationParameters
getDefault ()

Description

Set the parameters object to be used when none is provided for an instance of
Schedulable.

Returns
the default parameter object.

52 RTSJ 2.0 (Final Draft)

ConfigurationParameters javaz.realtime 5.3

setDefault Runner(ReleaseRunner)
Signature
public static synchronized void
setDefaultRunner (ReleaseRunner runner)
throws StaticIllegalArgumentException

Description

Sets the system default heap release runner.

Parameters
runner— The runner to be used when none is set. When null, the default release
runner is set to the original system default.

getDefaultRunner

Signature
public synchronized javax.realtime.ReleaseRunner
getDefaultRunner ()

Description

Gets the system default release runner.

Returns
a general runner to be used when none is set.

mayUseHeap
Signature
public boolean
mayUseHeap ()

Description

Determines whether or not this schedulable may use the heap.

Returns
true only when this configuration may allocate on the heap and may enter the
Heap.

getMessageLength
Signature
public int
getMessageLength()

Description

Obtain the size of the buffer dedicated to storing the message of the last thrown
throwable in the context of instances of Schedulable created with these parame-
ters. The value 0 indicates that no message will be stored.

RTSJ 2.0 (Final Draft) 53

9 Realtime Threads ConfigurationParameters

Returns
reserved memory in units of char.

getStackTraceDepth

Signature
public int
getStackTraceDepth()

Description

Obtain the number of frames available for storing the stack trace of the last
thrown throwable in the context of instances of Schedulable created with these
parameters. The value 0 indicates that no stack trace will be stored.

Returns
reserved memory as number of frames to save.

getClassNameLength
Signature
public int
getClassNameLength ()

Description

Obtain the maximum number of character available for storing class names in
each stack trace frame.

Returns
reserved memory in units of char.

getMethodNameLength
Signature
public int
getMethodNameLength ()

Description

Obtain the maximum number of character available for storing method signatures
in each stack trace frame.

Returns
reserved memory in units of char.

54 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

getFileNameLength
Signature
public int
getFileNameLength ()

Description

Obtain the maximum number of character available for storing file names in each
stack trace frame.

Returns
reserved memory in units of char.

getSizes
Signature
public longl[]
getSizes()

Description

Gets the array of implementation-specific sizes associated with Schedulable
objects created with these parameters. This method may allocate memory.

Returns
a copy of the array of implementation-specific sizes or null when none are set.

5.3.2.2 RealtimeThread

public class RealtimeThread

Inheritance

java.lang.Object
java.lang.Thread
RealtimeThread

Interfaces
javax.realtime.BoundSchedulable

Description

Class RealtimeThread extends Thread and adds access to realtime services such
as advanced scheduling, affinity management, asynchronous transfer of control,
and access to scope memory.
As with java.lang.Thread, there are two ways to create a RealtimeThread.
o Create a new class that extends RealtimeThread and override the run()
method with the logic for the thread.
« Create an instance of RealtimeThread using one of the constructors with a
logic parameter. Pass a Runnable object whose run() method implements
the logic of the thread.

RTSJ 2.0 (Final Draft) 55

5 Realtime Threads RealtimeThread

Every RealtimeThread is a member of a RealtimeThreadGroup, and it is not
possible to add a RealtimeThread from within a regular ThreadGroup.

See Section RealtimeThreadGroup

5.3.2.2.1 Constructors

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParameters,
RealtimeThreadGroup, Runnable)
Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
RealtimeThreadGroup group,
Runnable logic)

Description

Creates a realtime thread with the given characteristics and a specified Runnable.
The realtime thread group of the new thread is inherited from its parent task
unless group is set. The newly-created realtime thread is associated with the
scheduler in effect during execution of the constructor.

Since RTSJ 2.0
Parameters
scheduling—The SchedulingParameters associated with this (And possibly

other instances of Schedulable). When scheduling is null and the creator is
a schedulable, SchedulingParameters is a clone of the creator’s value created
in the same memory area as this. When scheduling is null and the creator
is a Java thread, the contents and type of the new SchedulingParameters
object is governed by the associated scheduler.

release—The ReleaseParameters associated with this (and possibly other in-
stances of Schedulable). When release is null the new RealtimeThread
will use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the RealtimeThread object.

memory—The MemoryParameters associated with this (and possibly other in-
stances of Schedulable). When memory is null, the new RealtimeThread
receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted, and it may access the
heap.

area—The initial MemoryArea of this handler.

56 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

config—The ConfigurationParameters associated with this (and possibly other
instances of Schedulable). When config is null, this RealtimeThread will
reserve no space for preallocated exceptions and implementation-specific values
will be set to their implementation-defined defaults.

group—The RealtimeThreadGroup of the newly created realtime thread or the
parent’s realtime thread group when null.

logic—The Runnable object whose run() method will serve as the logic for the
new RealtimeThread. When logic is null, the run() method in the new
object will serve as its logic.
Throws
StaticIllegalArgumentException—when the parameters are not compatible with
the associated scheduler.

IllegalAssignmentError—when the new RealtimeThread instance cannot hold
a reference to any of the values of scheduling, release, memory, or group,
when those parameters cannot hold a reference to the new RealtimeThread,
when the new RealtimeThread instance cannot hold a reference to the values
of area or logic, when the initial memory area is not specified and the new
RealtimeThread instance cannot hold a reference to the default initial memory
area, and when the thread may not use the heap, as specified by its memory
parameters, and any of the following is true:

 the initial memory area is not specified,

o the initial memory is heap memory,

 the initial memory area, scheduling, release, memory, or group is allocated
in heap memory.

e when this is in heap memory, or

e logic is in heap memory.

ScopedCycleException—when memory is a scoped memory area that has already
been entered from a memory area other than the current scope.

StaticIllegalStateException—when the ThreadGroup of the calling thread is
not an instance of RealtimeThreadGroup and the argument is null.

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryArea, ConfigurationParameters)
Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryArea area,
ConfigurationParameters config)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar-
ameters, MemoryArea, and ConfigurationParameters with default values for
all other parameters.

RTSJ 2.0 (Final Draft) 57

5 Realtime Threads RealtimeThread

This constructor is equivalent to RealtimeThread(scheduling, release,
null, area, config, null, null, null).

Since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters, Runnable)
Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters<?> release,
ConfigurationParameters config,
Runnable logic)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar-—
ameters, MemoryArea and a specified Runnable and default values for all other
parameters.

This constructor is equivalent to RealtimeThread(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ConfigurationPa-
rameters, RealtimeThreadGroup, Runnable) with values scheduling,
release, null, null, config, null, null, logic.

Since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters)
Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters<?> release,
ConfigurationParameters config)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar-—
ameters and MemoryArea and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, config, null, null).

Since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
Runnable)
Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters<?> release,

58 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

Runnable logic)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar-
ameters and a specified Runnable and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, null, null, logic).

Since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters<?> release)

Description

Creates a realtime thread with the given SchedulingParameters and Release-
Parameters and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, null, null, null).

RealtimeThread(SchedulingParameters)
Signature

public

RealtimeThread(SchedulingParameters scheduling)

Description

Creates a realtime thread with the given SchedulingParameters and default
values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, null,
null, null, null, null, null).

RealtimeThread

Signature
public
RealtimeThread ()

Description

Creates a realtime thread with default values for all parameters. This construc-
tor is equivalent to RealtimeThread(null, null, null, null, null, null,
null).

RTSJ 2.0 (Final Draft) 59

5 Realtime Threads RealtimeThread

5.3.2.2.2 Methods

currentRealtimeThread

Signature
public static javax.realtime.RealtimeThread
currentRealtimeThread ()
throws ClassCastException

Description

Gets a reference to the current instance of RealtimeThread.

Calling currentRealtimeThread is permissible when control is in an Async-
EventHandler. The method will return a reference to the RealtimeThread
supporting that release of the async event handler.

Throws
ClassCastException—when the current execution context is not an instance of
Schedulable.

Returns
a reference to the current instance of RealtimeThread.

currentSchedulable

Signature
public static javax.realtime.Schedulable
currentSchedulable ()
throws ClassCastException

Description

Gets a reference to the current instance of Schedulable. It behaves the same
when the current thread is an instance of java.lang.Thread, but otherwise it
produces an instance of AsyncBaseEventHandler.

Throws
ClassCastException—when the current execution context is that of a conventional
Java thread.

Returns
a reference to the current instance of Schedulable.

getCurrentReleaseTime

Signature
public static javax.realtime.AbsoluteTime
getCurrentReleaseTime ()

Description

60 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

Gets the absolute time of this thread’s last release, whether periodic or aperiodic.
The clock in the returned absolute time shall be the realtime clock for aperiodic
releases and the clock used for the periodic release for periodic releases.

Returns
the last release time in a new absolute time instance in the current memory area.

Since RTSJ 2.0

getCurrentReleaseTime(AbsoluteTime)
Signature
public static javax.realtime.AbsoluteTime
getCurrentReleaseTime (AbsoluteTime dest)

Description

Gets the absolute time of this thread’s last release, whether periodic or aperiodic.
The clock in the returned absolute time shall be the realtime clock for aperiodic
releases and the clock used for the periodic release for periodic releases.

Parameters
dest,—when not null, contains the last release time
Returns
the last release time in dest. When dest is null, create a new absolute time
instance in the current memory area.

Since RTSJ 2.0

getCurrentMemoryArea

Signature
public static javax.realtime.MemoryArea
getCurrentMemoryArea ()

Description

Gets a reference to the MemoryArea object representing the current allocation
context. For a task that is not an instance of Schedulable, the result can only
be heap or immortal memory.

Returns
a reference to the MemoryArea object representing the current allocation context.

sleep(HighResolutionTime)
Signature
public static void
sleep(HighResolutionTime<?> time)
throws InterruptedException,
ClassCastException,
StaticIllegalArgumentException

RTSJ 2.0 (Final Draft) 61

5 Realtime Threads RealtimeThread

Description

A sleep method that is controlled by a generalized clock. Since the time is
expressed as a HighResolutionTime, this method is an accurate timer with
nanosecond granularity. The actual resolution available for the clock and even the
quantity it measures depends on clock. The time base is the given Clock. The
sleep time may be relative or absolute. When relative, then the calling thread is
blocked for the amount of time given by time, and measured by clock. When
absolute, then the calling thread is blocked until the indicated value is reached by
clock. When the given absolute time is less than or equal to the current value
of clock, the call to sleep returns immediately.

Calling sleep is permissible when control is in an AsyncEventHandler. The
method causes the handler to sleep.

This method must not throw IllegalAssignmentError. It must tolerate
time instances that may not be stored in this.

Parameters
time—The amount of time to sleep or the point in time at which to awaken.
Throws
InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.

StaticIllegalArgumentException—when time is null, when time is a relative
time less than zero, or when the Chronograph of time is not a Clock.

waitForNextRelease
Signature
public static boolean
waitForNextRelease ()
throws StaticIllegalStateException,
ClassCastException

Description

Causes the current realtime thread to delay until the next release. (See re-
lease().) Used by threads that have a reference to either periodic or aperiodic
ReleaseParameters. The first release starts when this thread is released as a
consequence of the action of one of the start () family of methods. Each time
this method is called it will block until the next release unless the thread is in a
deadline miss condition. In that case, the operation of waitForNextRelease is
controlled by this thread’s scheduler. (See PriorityScheduler.)

Throws
StaticIllegalStateException—when this does not have a reference to a Re-
leaseParameters type of either PeriodicParameters or AperiodicParame-
ters.

62 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

ClassCastException—when the current thread is not an instance of Realtime-
Thread.

Returns
either false when the thread is in a deadline miss condition or true otherwise.
When a deadline miss condition occurs is defined by its thread’s scheduler.

Since RTSJ 2.0

waitForNextReleaselnterruptible
Signature
public static boolean
waitForNextReleaseInterruptible()
throws InterruptedException,
StaticIllegalStateException,
ClassCastException

Description

Same as waitForNextRelease () except it can throw an interrupted exception

Throws

InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between
calling this method and returning from it and the ReleaseParameters.
isRousable () on its release parameters returns true.
An interrupt during waitForNextPeriodInterruptible() is treated as a re-
lease for purposes of scheduling. This is likely to disrupt proper operation of
the periodic thread. The timing behavior of the thread is unspecified until the
state is reset by altering the thread’s release parameters or the thread is no
longer in a deadline miss state.

StaticIllegalStateException—when this does not have a reference to a Re-
leaseParameters type of either PeriodicParameters or AperiodicParame-
ters.

ClassCastException—when the current thread is not an instance of Realtime-
Thread.

Returns
either false when the thread is in a deadline miss condition or true otherwise.
When a deadline miss condition occurs is defined by its thread’s scheduler.

Since RTSJ 2.0

subsumes(Schedulable)

Signature
public boolean
subsumes (Schedulable other)

Description

RTSJ 2.0 (Final Draft) 63

5 Realtime Threads RealtimeThread

Returns
true when and only when this instance of Schedulable is more eligible than other.

Since RTSJ 2.0

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea ()

Description

Obtains the initial memory area for this RealtimeThread. When not specified
through the constructor, the default is a reference to the current allocation context
when this was constructed.

Returns

a reference to the initial memory area for this thread.

Since RTSJ 1.0.1

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters ()

Description

Returns
a reference to the current MemoryParameters object.

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Returns
a reference to the associated ConfigurationParameters object.

Since RTSJ 2.0

64 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters<7>
getReleaseParameters ()

Description

Gets a reference to the ReleaseParameters object for this schedulable.

Returns
a reference to the current ReleaseParameters object.

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler ()

Description

Returns
a reference to the associated Scheduler object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description

Returns
A reference to the current SchedulingParameters object.

release
Signature
public void
release()

Description

Generates a release for this RealtimeThread. The action of this release is
governed by the scheduler. It may, for instance, act immediately, or be queued,
delayed, or discarded. This method does not suspend itself and has a runtime
complexity of 0(1).

Throws

RTSJ 2.0 (Final Draft) 65

5 Realtime Threads RealtimeThread

StaticIllegalStateException—when this does not have a reference to a Re-
leaseParameters type of AperiodicParameters.

Since RTSJ 2.0

interrupt
Signature
public void
interrupt ()

isInterrupted
Signature
public boolean
isInterrupted()

deschedule
Signature
public void
deschedule()

Description

Performs any deschedule actions specified by this thread’s scheduler, either
immediately when in waitForNextRelease () or the next time the thread enters
waitForNextRelease().

Since RTSJ 2.0

reschedule
Signature
public void
reschedule()
throws IllegalTaskStateException

Description

Gets the thread to the blocked-for-next-release state. This causes the next event
to release the thread and waitForNextRelease to return. Deadline miss and
cost enforcement are re-enabled.

The details of the interaction of this method with deschedule, waitForNext-
Release and release are dictated by this thread’s scheduler.

Throws
IllegalTaskStateException—when the configured Scheduler and Scheduling-
Parameters for this RealtimeThread are not compatible.

Since RTSJ 2.0

66 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

startPeriodic(PhasingPolicy)
Signature
public void
startPeriodic(PhasingPolicy phasingPolicy)
throws LateStartException,
IllegalTaskStateException

Description
Starts the periodic thread with the specified phasing policy.

Parameters
phasingPolicy—The phasing policy to be applied when the start time given in
the realtime thread’s associated PeriodicParameters is in the past.
Throws
javax.realtime.LateStartException—when the actual start time is after the
assigned start time and the phasing policy is PhasingPolicy.STRICT PHASING.

IllegalTaskStateException—when the configured Scheduler and Scheduling-

Parameters for this RealtimeThread are not compatible or the thread is does
not have periodic parameters with an absolute start time.

Since RTSJ 2.0

start
Signature
public void
start ()
throws StaticIllegalStateException

Description
Sets up the realtime thread’s environment and starts it. The set up might include
delaying it until the assigned start time and initializing the thread’s memory area
stack. (See ScopedMemory.) It is never legal to start a thread more than once.
In particular, a thread may not be restarted once it has completed execution.

Throws
StaticIllegalStateException—when the configured Scheduler and Schedu-
lingParameters for this RealtimeThread are not compatible.

IllegalTaskStateException—when the affinity of this RealtimeThread is not
compatible with the affinity of the RealtimeThreadGroup it belongs.

IllegalThreadStateException—when the thread is already started.
Since RTSJ 2.0 adds new exceptions

getEffectiveStartTime

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime ()

RTSJ 2.0 (Final Draft) 67

5 Realtime Threads RealtimeThread

Description

Equivalent to getEffectiveStartTime (null).
Since RTSJ 2.0

getEffectiveStartTime(AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime (AbsoluteTime dest)

Description

Determines the effective start time of this realtime thread. This is not necessarily
the same as the start time in the release parameters.

o When the release parameters’ start time is relative, the effective start time
is the time of the first release.

o When the release parameters’ start time is an absolute time after start() is
invoked, the effective start time is the same as the release parameters’ start
time.

» When the release parameters’ start time is an absolute time before start() is
invoked, the effective start time depends on the phasing policy.

The default is to set the effective start time equal to the time start() is invoked.

Returns
the effective start time in dest. When dest is null, returns the effective start time
in an AbsoluteTime instance created in the current memory area.

Since RTSJ 2.0

mayUseHeap
Signature
public boolean
mayUseHeap ()

Description

Determines whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter Heap-
Memory.

Since RTSJ 2.0

setMemoryParameters(MemoryParameters)
Signature
public javax.realtime.Schedulable
setMemoryParameters (MemoryParameters memory)

Description

68 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

Parameters
memory—A MemoryParameters object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)
Throws
StaticIllegalArgumentException—when memory is not compatible with the
schedulable’s scheduler. Also when this schedulable may not use the heap and
memory is located in heap memory.
IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.

Returns
this

Since RTSJ 2.0 returns itself

setReleaseParameters(ReleaseParameters)
Signature
public javax.realtime.Schedulable
setReleaseParameters(ReleaseParameters<?> release)

Description

Parameters
release—A ReleaseParameters object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)
Throws
StaticIllegalArgumentException—when release is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
release is located in heap memory.
IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.
IllegalTaskStateException—when the task is running and the new release pa-
rameters are not compatible with the current scheduler.

Returns
this

Since RTSJ 2.0 returns itself

RTSJ 2.0 (Final Draft) 69

5 Realtime Threads RealtimeThread

setScheduler(Scheduler)

Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler)

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

For an instance of RealtimeThread, the Schedulable is running when
RealtimeThread.start() has been called on it and RealtimeThread. join()
would block.

Parameters

scheduler—A reference to the scheduler that will manage execution of this sched-

ulable. Null is not a permissible value.
Throws

StaticIllegalArgumentException—when scheduler is null, or the schedul-
able’s existing parameter values are not compatible with scheduler. Also
when this schedulable may not use the heap and scheduler is located in heap
memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

StaticSecurityException—when the caller is not permitted to set the scheduler
for this schedulable.

IllegalTaskStateException—when scheduler has scheduling or release param-
eters that are not compatible with the new scheduler and this schedulable is
running.

Returns
this

Since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)
Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memoryParameters)

Description

70 RTSJ 2.0 (Final Draft)

RealtimeThread javazx.realtime 5.3

Parameters
scheduler—A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.

scheduling—A reference to the SchedulingParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws

StaticIllegalArgumentException—when scheduler is null or the parameter
values are not compatible with scheduler. Also thrown when this schedulable
may not use the heap and scheduler, scheduling release, memoryParame-
ters, or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.
StaticSecurityException—when the caller is not permitted to set the scheduler

for this schedulable.

Returns
this

Since RTSJ 2.0

setSchedulingParameters(SchedulingParameters)
Signature
public synchronized javax.realtime.Schedulable
setSchedulingParameters(SchedulingParameters scheduling)

Description

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the
default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.). When the
Affinity is not defined in scheduling, then the affinity that will be used is the
one of the creating Thread. However, this default affinity will not appear when
calling getSchedulingParameters, unless explicitly set using this method.
Throws
StaticIllegalArgumentException—when scheduling is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

RTSJ 2.0 (Final Draft) 71

5 Realtime Threads

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalTaskStateException—when the task is active and the new scheduling
parameters are not compatible with the current scheduler or when the task is
active and the affinity in scheduling is not a subset of the affinity of this
object’s RealtimeThreadGroup or when the task is active and the affinity in
scheduling is invalid.

Returns
this

Since RTSJ 2.0, method returns a reference to this.

5.4 Rationale

Realtime programming requires a scheduling method radically different than what
a conventional Java programmer would expect, but most other aspects of thread
behavior are the same. Therefore, it is reasonable to model a realtime thread as an
extension to a java.lang.Thread. The main additions needed are for scheduling
control such as release control for asynchronous event handling. Here asynchronous
includes periodic releases, since release is asynchronous with regards to the executing
code.

The RTSJ platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial realtime operating systems.
The ReleaseParameters and MemoryParameters provided to the RealtimeThread
constructor provide a number of common realtime thread types, including periodic
threads. However, conventional Java thread scheduling is supported. The realtime
priorities are all above the conventional Java priorities to ensure the realtime threads
take precedence over normal tasks.

The MemoryParameters class is provided with a may-use-heap option in order to
enable time-critical schedulables to execute in preference to the garbage collector
given appropriate assignment of execution eligibility when false. The memory access
and assignment semantics of these heapless schedulables are designed to guarantee
that the execution of such threads does not lead to an inconsistent heap state.

72 RTSJ 2.0 (Final Draft)

Chapter 6

Scheduling

Scheduling is a key differentiation between a conventional Java implementation and a
realtime Java implementation. Whereas conventional Java implementations relies on
some sort, of fair scheduling, a realtime Java implementation must provide a realtime
scheduler. In a realtime scheduler, ensuring that critical tasks finish on time is more
important than overall throughput or fairness.

The scheduler required by this specification is fixed-priority preemptive with
at least 28 unique priority levels. At least 28 must be supported by each imple-
mentation, but a deployment need not have all 28 active, when not needed by the
application. It is represented by the class FirstInFirstOutScheduler, a subclass
of PriorityScheduler, and is called the base scheduler. As the name implies, this
scheduler does not time-slice threads at a given priority, but rather runs each to
completion, so long as no higher priority thread becomes ready to run and no other
processor is available for the higher priority thread. In that case, the current thread
is preempted by the higher priority thread.

The schedulables required by this specification are denoted by the Schedulable
interface and include the classes RealtimeThread and AsyncBaseEventHandler
along with its subclasses. The base scheduler assigns processor resources according
to the schedulables’ release characteristics, execution eligibility, and processing
constraint values. Subclasses of these schedulables are also schedulables and behave
as these required classes.

The scheduler dispatches a schedulable, that is ready to run, on a CPU. Some
systems, such as multicore systems, have more than one CPU to choose from. By
default, a ready schedulable would be dispatched on the next available CPU; however,
the specification provides an interface, Affinity, to control on which sets of CPUs
a given schedulable may run.

An instance of the SchedulingParameters class contains values of execution
eligibility, including affinity. A schedulable is considered to have the execution eligi-
bility represented by the SchedulingParameters object currently bound to it. For
implementations providing only the base scheduler, the scheduling parameters object
is an instance of PriorityParameters (a subclass of SchedulingParameters).

An instance of the ReleaseParameters class or its subclasses, PeriodicParame-
ters, AperiodicParameters, and SporadicParameters, contains values that define
a particular release characteristic. A schedulable is considered to have the release

73

6 Scheduling

characteristics of a single associated instance of the ReleaseParameters class.

For a realtime thread, the scheduler defines the behavior of the realtime thread’s
waitForNextRelease methods. For all Schedulables, the scheduler monitors cost
overrun and deadline miss conditions based on its release parameters. Release
parameters also govern the treatment of the minimum interarrival time for sporadic
schedulables.

The ThreadGroup class has special significance in an RTSJ implementation. As
in conventional Java, the maximum priority of a thread is governed in part by
its thread group, but the CPU affinity of a thread is also governed by its thread
group along with the Affinity class. Furthermore, there is an important subclasses:
RealtimeThreadGroup. This class provides additional means of managing tasks.

An instance of the RealtimeThreadGroup provides scheduling constraints for
schedulables similar to how a TheadGroup does for conventional Java threads. The
scheduler and maximum SchedulingParameters can be set. A schedulable can only
be created in an instance of RealtimeThreadGroup or its subclass. Therefore the
root thread group and the thread group of the initial thread must both be realtime
thread groups in an RTSJ implementation.

The ProcessingConstraint class is a subclass of RealtimeThreadGroup. An
instance of the ProcessingConstraint class contains values that define a temporal
scope for a processing group. When a schedulable has an associated instance of
the ProcessingConstraint class, it is said to execute within the temporal scope
defined by that instance. A single instance of the ProcessingConstraint class can
be, and typically is, associated with many schedulables. In an implementation that
supports cost enforcement, the combined processor demand of all of the schedulables
associated with an instance of the ProcessingConstraint class must not exceed
the values in that instance (i.e., the defined temporal scope). The processor demand
is determined by the Scheduler.

The scheduling classes provide the necessary support for realtime scheduling.
These classes

e enable the definition of schedulables,

« manage the assignment of execution eligibility to schedulable objects,

« manage the execution of instances of the AsyncBaseEventHandler and Real-

timeThread classes,

 assign release characteristics to schedulables,

» assign execution eligibility values to schedulables, and

« manage the execution of groups of schedulables that collectively exhibit addi-

tional release characteristics.

6.1 Definitions

Task — A unit of independent execution. In conventional Java, this is a thread.
The Schedulable interface marks realtime tasks. The classes that implement
Schedulable are subject to the scheduling behavior of realtime schedulers.
Instances of these classes are referred to as Schedulables (SO) and provide
four principle execution states: executing, eligible-for-execution, blocked, and

descheduled.

74 RTSJ 2.0 (Final Draft)

Definitions 6.1

1. Ezecuting refers to the state where the schedulable is currently running
on a Processor.

2. Blocked refers to the state where the schedulable is not among those
schedulables that could be selected to have their state changed to executing.
The blocked state will have a reason associated with it, e.g., blocked-for-
I/O-completion, blocked-for-release-event, or blocked-by-cost-overrun.

3. Eligible-for-execution refers to the state where the schedulable could be
selected to have its state changed to executing.

4. Descheduled refers to the state where the schedulable is ineligible to be
released.

Each type of schedulable defines its own release events, for example, the release
events for a periodic schedulable are caused by the passage of time and occur
at programmatically specified intervals.

Release — The changing of the state of a schedulable from blocked-for-release-event
to eligible-for-execution. When the state of a schedulable is blocked-for-release-
event and a release event occurs then the state of the schedulable is changed
to eligible-for-execution. Otherwise, a state transition from blocked-for-release-
event to eligible-for-execution is queued; this is known as a pending release.
When the next transition of the schedulable into state blocked-for-release-
event occurs, and there is a pending release, the state of the schedulable is
immediately changed to eligible-for-execution.

Completion — The changing of the state of a schedulable from executing to blocked-
for-release-event. Each completion corresponds to a release. A realtime thread
is deemed to complete its most recent release when it terminates.

Deadline — A time before which a schedulable should complete. The i deadline
is associated with the i*" release event and a deadline miss occurs when the i
completion would occur after the i*" deadline.

Deadline Monitoring — The process by which the implementation responds to
deadline misses. When a deadline miss occurs for a schedulable object, the
deadline miss handler, if any, for that schedulable is released. This behaves
as if there were an asynchronous event associated with the schedulable, to
which the miss handler was bound, and which was fired when the deadline miss
occurred.

Periodic, Sporadic, and Aperiodic — Adjectives applied to schedulables which
describe the temporal relationship between consecutive release events. Let R;
denote the time at which a schedulable has had the i** release event occur.
Ignoring the effect of release jitter:

1. a schedulable is periodic when there exists a value T > 0 such that for all
1, Riv1 — R; =T, where T is called the period;

2. a schedulable that is not periodic is said to be aperiodic; and

3. an aperiodic schedulable is said to be sporadic when there is a known
value T' > 0 such that for all 7, R;y; — R; >=T. T is then called the
minimum interarrival time (MIT).

Cost — The maximum amount of CPU time that a schedulable is allowed between
a release and its associated completion.
Current CPU Consumption — The amount of CPU time that the schedulable

RTSJ 2.0 (Final Draft) 75

6 Scheduling

has consumed since its last release.

Cost Overrun — The time at which a schedulable’s current CPU consumption
becomes greater than, or equal to, its cost.

Cost Monitoring — The process by which the implementation tracks CPU con-
sumption and responds to cost overruns. When a cost overrun occurs for a
schedulable, its cost overrun handler, if any, is released. This behaves as if
there were an asynchronous event associated with the schedulable, to which
the overrun handler was bound, and which is fired when a cost overrun occurs.

Cost Enforcement — The process by which the implementation ensures that the
CPU consumption of a schedulable is no more than the value of the cost
parameter in its associated ReleaseParameters. (Cost enforcement is an
optional facility in an implementation of the RTSJ.)

Base Priority — The priority assigned to a task, either in its associated Priori-
tyParameters object or by Thread.setPriority; the base priority of a Java
thread is the priority returned by its getPriority method.

Enforced Priority — A priority below the idle priority, which ensures the schedul-
able has no execution eligibility.

Active Priority — The execution eligibility criterion for the priority-based sched-
ulers. It is the maximum of the base (or enforced priority) and any priority a
task has acquired due to the action of priority inversion avoidance algorithms
(see the Synchronization Chapter).

Processing Group — A collection of tasks whose combined execution has further
execution time constraints which the scheduler uses to govern the group’s
execution eligibility.

Base Scheduler — An instance of the FirstInFirstOutScheduler class as defined
in this specification. This is the initial default scheduler.

Processor — A logical processing element that is capable of physically executing a
single thread of control at any point in time. Hence, multicore platforms have
multiple processors, platforms that support hyperthreading also have more
than one processor. It is assumed that all processors are capable of executing
the same instruction sets.

Affinity — A set of processors, where a valid affinity is a set on which the global
scheduling of a schedulable can be supported.

Idle Task — A notional system or VM-provided task that consumes all CPU time
not used by other tasks. It may be an actual process or thread, or it may be
a power-saving mode that halts or slows the CPU, or it may be an artificial
construction. For the purposes of this specification, it has a priority below that
of all nonblocked tasks and above that of tasks blocked due to cost overrun.
Details of its implementation are not specified here.

6.2 Semantics

Scheduling semantics determines when each task runs. Both The Java Virtual
Machine Specification[5] and The Java Language Specification[4] are silent on the
semantics for scheduling; only the semantics for synchronization is provided. Since
scheduling is central to realtime programming, its detailed semantics, applicable

76 RTSJ 2.0 (Final Draft)

Semantics 6.2

across all available scheduler algorithms, is defined below, along with definitions
of the required scheduling algorithms. Semantics that apply to particular classes,
constructors, methods, and fields can be found in the class description and the
constructor, method, and field detail sections.

6.2.1 Schedulers

There are four basic requirements for schedulers.

1. A scheduler may only change the execution eligibility of the schedulables which
it manages and only in accordance with its scheduling algorithm.

2. Each scheduler provided for application code by an RTSJ implementation must
have documentation describing its semantics including at least the following:
the algorithm used to determine eligibility, what schedulables may be scheduled
by it, the subclasses of Scheduler and SchedulingParameters used to control
the scheduler, and any other classes needed by the scheduler.

3. Every implementation must provide a round-robin scheduler and a first in first
out scheduler using priorities above the ten (1-10) conventional Java priorities
as documented below.

4. Tasks with a conventional Java priority (1-10) must be scheduled such that
when two or more threads run at the same priority, one thread cannot block
another indefinitely or violate the requirements dictated by java.lang.Thread.

5. Tasks with a conventional Java priority must be scheduled using some sort of
fair scheduler such that higher-priority Java tasks cannot starve lower-priority
Java tasks indefinitely.

6.2.1.1 Affinity

For systems that support more than a single processor, one often needs to control
what may run on each processor. The Affinity class provides a mean of expressing
these sets of processors. Affinity has three uses: to inform a scheduler on what
processors a task may run, to show what subsets of processors on a system a scheduler
may use, and to limit what processors a set of tasks may use.

To this end, valid affinities define a distinguished subset of all possible affinities.
These are implementation defined and may even be specifiable for each run of a JVM.
They can be used either to reflect the scheduling arrangement of the underlying OS
or they can be used by the system designer to impose defaults for groups of task. A
program is only allowed to dynamically create new valid affinities with cardinality of
one. This restriction reflects the concern that not all operating systems will support
multiprocessor affinities.

A valid set is used to show on what subsets of processors a task may run and
only members of this set may be used in the SchedulingParameters given to a
task. Others sets may be created, but may only be used to limit general processor
availability. For example, a RealtimeThreadGroup has an affinity for this purpose.

Tasks are subject to both their own processor affinity and the one of their realtime
thread group. A task’s affinity must be a valid affinity and also a subset of the
affinity of its realtime thread group.

RTSJ 2.0 (Final Draft) 77

6 Scheduling

Ordinarily, a task inherits its affinity from its creator unless the creator is an
unbound instance of AsyncBaseEventHandler, since such an instance has no affinity.
A task created by an unbound instance of AsyncBaseEventHandler inherits its
affinity from the thread running the handler. An instance of Schedulable can
receive a different affinity, so long as that affinity is subsumed by that of its closest
enclosing RealtimeThreadGroup.

In the case of an instance of BoundSchedulable, the affinity can be assigned by
specifying an affinity in the SchedulingParameters. Otherwise, it defaults to that
of the thread current during creation as stated above.

The affinity of a task can only be changed via setting the task’s Scheduling-
Parameters. It may only be changed when the thread is not running. The affinity
must be valid and compatible with the RealtimeThreadGroup in which the task is a
member when the task is started. In other words, the intersection of the affinity of the
group and the task may not be empty or an invalid affinity. When the ThreadGroup
is set, but not the affinity, there is a danger that the default affinity will not be
compatible with the affinity of that ThreadGroup.

In this case a thread is started with an invalid or incompatible affinity, as describe
above, a ProcessorAffinityException will be thrown when the thread is started.
In the case of an AsyncBaseEventHandler, this exception is thrown when the handler
is added to an event under the same condition. Thus the effective affinity of a task
must be a valid affinity for that task to run.

6.2.1.2 Parameter Values

A scheduler uses the values contained in the different parameter objects associated
with a schedulable to control the behavior of the schedulable. The scheduler deter-
mines what values are valid for the schedulables it manages, which defaults apply and
how changes to parameter values are acted upon by the scheduler. Invalid parameter
values result in exceptions, as documented in the relevant classes and methods.
1. The default values for all schedulers are as follows, unless otherwise stated.
(a) Scheduling parameters are copied from the creating schedulable when
possible; when the creating schedulable does not have scheduling parame-
ters, the default is an instance of the default parameters for the prevailing
scheduler when the schedulable starts.
(b) The default for release parameters depend on the type of schedulable:

i. for instance of RealtimeThread, the default is an instance of Back-
groundParameters with default values (see AperiodicParameters),
and

ii. for instance of AsyncBaseEventHandler the default is an instance of
aperiodic parameters with default values (see AperiodicParameters).

2. Memory parameters default to null which signifies that memory allocation by
the schedulable is not constrained by the scheduler.
The default scheduling parameters are scheduler dependent.
4. All numeric or RelativeTime attributes in parameter values must be greater
than or equal to zero.
5. Values of period must be greater than zero.

@

78 RTSJ 2.0 (Final Draft)

Semantics 6.2

6. Changes to scheduling, release, memory, and processing group parameters,
either by methods on the schedulables bound to the parameters or by altering
the parameter objects themselves, potentially modify the behavior of the
scheduler with regard to those schedulables. When such changes in behavior
take effect depends on the parameter in question, and the type of schedulable,
as described below.

7. When changes to a parameter type—scheduling, release, memory, and process-
ing group—take effect depends on the parameter type.

(a) Changes to scheduling parameters take effect according to rules defined
by the associated Scheduler.

(b) Changes to release parameters depend on the parameter being changed,
the type of release parameter object, and the type of schedulable.

i. Changes to the deadline and the deadline miss handler take effect at
each release event as follows: when the iy, release event occurred at
a time t;, then the i*" deadline is the time ¢; + D;, where D; is the
value of the deadline stored in the schedulable’s release parameters
object at the time ¢;. When a deadline miss occurs then it is the
deadline miss handler that was installed in the schedulable’s release
parameters at time ¢; that is released.

ii. Changes to cost and the cost overrun handler take effect immediately.

iii. Changes to the period and start time values in PeriodicParameters
objects are described in “Release of a Realtime Thread” below.

iv. Changes to the additional values in ReleaseParameters objects and
SporadicParameters are described, respectively, in “General Release
Control” and “Sporadic Release Control”, below.

v. Changes to the type of release parameters object generally take effect
after completion, except as documented in the following sections.

(¢) Changes to memory parameters take effect immediately.

(d) Changes to processing group parameters take effect as described in “Pro-
cessing Groups” below.

(e) Changes to the scheduler responsible for a schedulable object take effect
at completion.

(f) Changes to cost enforcement state, i.e., enabling or disabling cost enforce-
ment on a processing group or release parameters object associated with
one or more schedulables, take effect at the next release of the associated
ProcessingConstraint or associated Schedulable, respectively.

6.2.1.3 Release Control

Schedulables are released in response to the occurrence of events, such as starting
a realtime thread, calling the release method of a realtime thread, or firing the
asynchronous event associated with an asynchronous event handler. The occurrence
of these events, each of which is a potential release event, is termed an arrival, and
the time that they occur is termed the arrival time. The only difference between a
periodic and an aperiodic event is the regularity of the arrival times.

A scheduler behaves effectively as if it maintained a queue, called the arrival time
queue, for each schedulable object. This queue maintains information related to each

RTSJ 2.0 (Final Draft) 79

6 Scheduling

release event, including any parameters passed with the release mechanism, from its
“arrival” time until the associated release completes, or another release event occurs,
whichever is later. When an arrival is accepted into the arrival time queue, then it is
a release event and the time of the release event is the arrival time. The initial size
of this queue is an attribute of the schedulable’s aperiodic parameters, and is set
when an aperiodic parameter object is first associated with the schedulable. Over
time, the queue may become full and its behavior in this situation is determined by
the queue overflow policy specified in the schedulable’s aperiodic parameters. The
enumeration class QueueOverflowPolicy defines four overflow policies.

Policy Action on Overflow

IGNORE | Silently ignore the arrival. The arrival is not accepted,
no release event occurs, and, when the arrival was caused
programmatically, such as by invoking fire on an asyn-
chronous event, the caller is not informed that the arrival
has been ignored.

EXCEPT | Throw an ArrivalTimeQueueOverflowException. The ar-
rival is not accepted, and no release event occurs, but when
the arrival was caused programmatically, the caller will have
ArrivalTimeQueueOverflowException thrown.

REPLACE | The arrival replaces the latest release in the queue, when
there is one, but no new release event occurs. When the
completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, the release event time for that release event is re-
placed with the arrival time of the new arrival and any
associated parameters overwritten. This will alter the dead-
line for that release event. When the deadline has already
been missed or the queue length is zero, the behavior of the
REPLACE policy is equivalent to the IGNORE policy.

SAVE Behave effectively as if the queue were expanded as nec-
essary to accommodate the new arrival. This expansion
is permanent. The arrival is accepted and a release event
occurs.

DISABLE | No queuing takes place. All incoming events increment the
pending fire or release count. I may only be used where
there is no payload and the release parameters are not
sporadic.

Changes to the queue overflow policy take effect immediately. When an arrival
occurs, and the queue is full, the policy applied is the policy as defined at that time.

6.2.1.3.1 Sporadic Release Control

“Sporadic Release Control” is a special case of “Release Control,” where the arrival
time or execution time may be additionaly regulated. Sporadic parameters include

80 RTSJ 2.0 (Final Draft)

Semantics 6.2

a minimum interarrival time (MIT) which characterizes the expected frequency of
releases. When an arrival is accepted, the implementation behaves as if it calculates
the earliest time at which the next arrival could be accepted, by adding the current
MIT to the arrival time of this accepted arrival. The scheduler guarantees that each
sporadic schedulable it manages, is released at most once in any MIT.

Two mechanisms are specified for enforcing this rule: arrival-Time regulation and
release-time requlation. Arrival-time regulation controls the work-load by considering
the time between arrivals. When a new arrival occurs earlier than the expected next
arrival time then a MIT violation has occurred, and the scheduler acts to prevent a
release from occurring that would break the “one release per MIT” guarantee. Release-
time regulation controls when events are released. Under this policy all arrivals
that can be queued under the current QueueOverflowPolicy are accepted, but the
scheduler behaves effectively as if released schedulables were further constrained
by a scheduling policy that restricts releases to at most one release per MIT. As
described in the following tables, three types of arrival-time regulation and one type
of release-time regulation are supported.

Arrival-Time Regulation

Policy Action on Violation
IGNORE | Silently ignore the violating arrival. The arrival is not
accepted, no release event occurs, and, when the arrival
was caused programmatically (such as by invoking fire on
an asynchronous event), the caller is not informed that the
arrival has been ignored.
EXCEPT | Throw a MITViolationException. The arrival is not ac-
cepted, and no release event occurs, but when the arrival
was caused programmatically, the caller will have MITVio-
lationException thrown.
REPLACE | The arrival is not accepted and no release event occurs.
When the completion associated with the last release event
in the queue has not yet occurred, and the deadline has not
been missed, then the release event time for that release
event is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. When the completion associ-
ated with the last release event has occurred, or the deadline
has already been missed, the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

RTSJ 2.0 (Final Draft) 81

6 Scheduling

Release-Time Regulation

Policy | Action on Violation

SAVE | The arrival time is delayed until after the current MIT
interval. This policy is only able to delay the effective
release of a schedulable. The deadline of each release event
is always set relative to its arrival time. This policy might
not schedule the effective release of an asynchronous event
handler until after its deadline has passed. In this case, the
deadline miss handler is released at the deadline time even
though the related asynchronous event has not yet reached
its effective release. Once an arrival is queued, the SAVE
policy makes no direct use of the next expected arrival time,
but it maintains the value in case the MIT violation policy
is changed from SAVE to one of the arrival-time regulation
policies.

The effective release time of a release event 7 is the earliest time that the handler
can be released in response to that release event. It is determined for each release
event based on the MIT policy in force at the release event time.

1. For IGNORE, EXCEPT and REPLACE the effective release time is the release

event time.

2. For SAVE the effective release time of release event ¢ is the effective release

time of release event i-1 plus the current value of the MIT.
The scheduler will delay the release associated with the release event at the head of
the arrival time queue until the current time is greater than or equal to the effective
release time of that release event.

Changes to minimum interarrival time and the MIT violation policy take effect
immediately, but only affect the next expected arrival time, and effective release
time, for release events that occur after the change.

6.2.1.3.2 Releasing a Realtime Thread

The repeated release of a realtime thread is achieved by executing in a loop
and invoking the RealtimeThread.waitForNextRelease' methods, or its interrupt-
ible equivalent RealtimeThread.waitForNextReleaseInterruptible) within that
loop. For simplicity, unless otherwise stated, the semantics in this section apply to
both forms of this method.

1. A realtime thread’s release characteristics are determined by the following:

(a) the invocation of the realtime thread’s start method and the value of its
phasing policy parameter (if applicable);

(b) the action of the RealtimeThread methods waitForNextRelease, sched-
ule, and deschedule;

(¢) the occurrence of deadline misses and whether or not a miss handler is
installed; and

!The method RealtimeThread.waitForNextPeriod has been replaced by Realtime-
Thread.waitForNextRelease as of RTSJ 2.0. The same goes for its interruptible equivalent.

82 RTSJ 2.0 (Final Draft)

Semantics 6.2

(d) whether the passing of time generates periodic release events or calls to
the release method generates aperiodic release events.

. The initial release event depends on the type of release parameters given the

realtime thread:

(a) for a realtime thread with periodic parameters, the initial release event
occurs in response to the invocation of its start method in accordance
with the start time specified in its release parameters and its assigned
phasing policy—see PeriodicParameters and PhasingPolicy;

(b) For a realtime thread with aperiodic parameters, the initial release event
occurs immediately in response to the invocation of its start method.

. Changes to the start time in a realtime thread’s PeriodicParameters object
only have an effect on its initial release time. Consequently, when a Periodic-
Parameters object is bound to multiple realtime threads, a change in the start
time may affect all, some or none, of those threads, depending on whether or
not start has been invoked on them.

. When subsequent release events occur also depends on the type of release
parameters given to the realtime thread:

(a) for periodic realtime threads, each period (and hence each release) falls
due, except as described below (in 6d), at regular intervals such that when
the i release event occurred at a time ¢;, the i + 1 release event occurs at
the time t; + T;, where T; is the value of the period stored in the realtime
thread’s PeriodicParameters object at the time ;;

(b) for aperiodic realtime threads, a release occurs with each call of the release
method, except as described below (in 6d); and

(c) for sporadic realtime threads, a release occurs with each call of the release
method, except, as described below (in 6d), when additional regulation is
required to enforce MIT as defined in Sporadic Release Control below.

. Each release of an aperiodic realtime thread is an arrival.

(a) When the thread has release parameters of type ReleaseParameters,
then the arrival may become a release event for the thread according to
the semantics given in “General Release Control” below.

(b) When the thread has release parameters of type SporadicParameters,
then the arrival may become a release event for the thread according to
the semantics given in “Sporadic Release Control” below.

. The implementation should behave effectively as if the following state variables

were added to a realtime thread’s state,
boolean deschedule,
integer pendingReleases,
integer missCount, and
boolean lastReturn;
and manipulated by the actions as described below.

(a) Initially

deschedule = false,
pendingReleases = 0,
missCount =0, and
lastReturn = true.

RTSJ 2.0 (Final Draft) 83

6 Scheduling

84

(b) The function of the deschedule method depends on the current state of
the realtime thread.

i. When current state is a blocked state, either blocked-for-release-event
or blocked-for-missed-release, it sets the value of deschedule to true
and sets the thread’s state to descheduled.

ii. When the current state is not a blocked state, it just sets the value of
deschedule to true.

(c) The function of the reschedule method also depends on the current state
of the realtime thread.

i. When the realtime thread is in the descheduled state, it sets the value
of deschedule to false, sets the values of pendingReleases and
missCount to zero, changes the thread’s state to blocked-for-release-
event, and tells the cost monitoring and enforcement system to reset
for this thread.

ii. When the realtime thread is not in the Descheduled state, it just sets
the value of deschedule to false.

(d) A realtime thread that is in the descheduled state will not receive any
further release events until after it has been rescheduled by a call to
reschedule; this means that no deadline misses can occur.

(e) What happens when a release event occurs depends on the current state.

i. When the state of the realtime thread is descheduled, do nothing.

ii. When the state is blocked-for-release-event, i.e., it is waiting in wait-
ForNextRelease, increment the value of pendingReleases, inform
cost monitoring and enforcement that the next release event has
occurred, and notify the thread to make it eligible for execution;

iii. Otherwise, when the thread is in a release, increment the value of
pendingReleases, and inform cost monitoring and enforcement that
the next release event has occurred.

(f) On each deadline miss, one of two things happen:

i. when the realtime thread has a deadline miss handler, the value of
deschedule is set to true, the handler is atomically released with
its fireCount increased by the value of missCount + 1, and zero for
missCount;

ii. otherwise, one is added to the missCount value.

(g) When the waitForNextRelease method is invoked by the current realtime
thread there are three possible behaviors depending on the value of
missCount and lastReturn.

i. When missCount is zero, any pending parameter changes are applied,
cost monitoring and enforcement are informed of completion, and then
the thread waits while deschedule is true, or pendingReleases is
zero. Then the lastReturn value is set to true, pendingReleases
is decremented, and true is returned.

ii. When missCount is greater than zero and the lastReturn value is
false, completion occurs: the missCount value is decremented; then
any pending parameter changes are applied, pendingReleases is
decremented, cost monitoring and enforcement is informed that the

RTSJ 2.0 (Final Draft)

Semantics 6.2

realtime thread has completed, and false is returned;

iii. Otherwise, when missCount is greater than zero and the lastRe-

turn value is true, the missCount value is decremented and the
lastReturn value is set to false and false is returned.

7. An invocation of the RealtimeThread.waitForNextRelease method with
release parameters, where ReleaseParameters.isRousable returns true, be-
haves as described above with the following differences.

(a) When the invocation commences with an instance of AsynchronouslyIn-
terruptedException (AIE) is pending on the realtime thread, then the
invocation immediately completes abruptly by throwing that pending in-
stance as an InterruptedException. When this occurs, the most recent
release has not completed. When the pending instance is the generic AIE
instance, then the interrupt state of the realtime thread is cleared.

(b) What happens when an instance of AIE becomes pending on a realtime
thread is dependent on the state of the thread.

1.

1i.

1il.

iv.

V.

When the thread is descheduled, the AIE remains pending until the
realtime thread is no longer descheduled. The associated reschedule
acts as a release event. Execution then continues as in 7c where
the time value used as t;,; is the time at which the schedulable was
rescheduled.

When it is blocked-for-release-event, then this acts as a release event.
Execution then continues as in 7c, where the time value used as t;,;
is the time at which the AIE becomes pending.

The realtime thread is made eligible for execution.

. Upon execution, the invocation completes abruptly by throwing the

pending AIE instance as an InterruptedException. When the
pending instance is the generic AIE instance, the interrupt state of
the realtime thread is cleared.

The deadline associated with this release is the time t;,;+D;,:, where
D;,; is the value of the deadline stored in the realtime thread’s release
parameters object at the time t;,;.

The next release time for the realtime thread will be t;,;+7T;,:, where
Tt is the value of the period stored in the realtime thread’s release
parameters object at the time t;,;.

Cost monitoring and enforcement is informed of the release event.

When the thrown AIE instance is caught, the ATE becomes pending again (as
per the usual semantics for AIE) until it is explicitly cleared.

8. Changes to release parameter types are treated as a pseudo RESTART of the
realtime thread and

any old pending releases are cleared,

any old arrival queue is flushed,

any outstanding call to deschedule is cleared, and

any outstanding deadline misses are cleared.

(d)

9. The effect of the change on the thread falls into one of four main cases.

(a) When the realtime thread is not waiting for the next release event and is
not descheduled,

RTSJ 2.0 (Final Draft) 85

6 Scheduling

i. there is no effect until the end of current release, and

ii. when the change occurs, it is a pseudo restart of the thread, i.e., when
the new parameters are aperiodic, the release is immediate and when
the parameters are periodic, the periodic start time algorithm is used.

(b) When the realtime thread is not waiting for the next release event, but
there is an outstanding deschedule,

i. there is an immediate “schedule” of the thread,

ii. there is no further effect until end of current release, and

iii. when change occurs, it is a pseudo restart of the thread, i.e., when
the new parameters are aperiodic, the release is immediate, and when
the new parameters are periodic, the periodic start time algorithm is
used.

(c) When the realtime thread state is blocked-for-release-event, i.e., it is wait-
ing in waitForNextRelease, and the release parameter type is changed,

i. from Periodic to Aperiodic, at the next periodic release event occurs,
the thread becomes aperiodic with an immediate release, or

ii. from Aperiodic to Periodic, there is an immediate pseudo restart of
the thread using the periodic start time algorithm.

(d) When the realtime thread state is descheduled and the of release parame-
ters is changed,

i. the change is from Periodic to Aperiodic, there is an immediate
“schedule” of the thread, and when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release, or

ii. the change is from Aperiodic to Periodic, there is an immediate
“schedule” of the thread and there is an immediate pseudo restart of
the thread using the periodic start time algorithm.

6.2.1.3.3 UML Diagrams for Realtime Thread Releases

The three UML diagrams in Figures 6.1, 6.2, and 6.3, are provided to illustrate
the foregoing rules for releasing realtime threads. The first two figures are for a
thread without a deadline miss handler. The first is a UML sequence diagram of
some examples of Realtime Thread releases. The second is a UML state chart of the
release process for a realtime thread. The third is a UML state chart of the release
process for a realtime thread with a deadline miss handler.

In Figure 6.1, a yellow background marks the execution of a normal release, an
orange background marks the execution of a miss handler, and a red background
marks the execution of a missed release. Both the miss handler and all missed
releases are eligible to run as soon as the previous release is finished. A normal
release, which encounters a deadline miss during its execution, is not complete until
its miss handler completes.

In the other two figures, a yellow background marks releases and a pink background
marks blocked states. There are three release states: normal release, miss handler,
and missed release. They can only be left by a call to waitForNextRelease or its
equivalent. The miss handler state is part of a normal release that misses its deadline
during the release. There are two blocked-for-release-event states: blocked for normal

86 RTSJ 2.0 (Final Draft)

Semantics 6.2

Figure 6.1: Sequence Diagram of Some Example Realtime Thread Releases

deadline

[meaumetiread]
T T
| |
| |
start | |
pendingReleases = 0 I\ : :
missCount = 0 | |
lastReturn = true | |
| |
| |
release ! :
pendingReleases = 1 & pendingReleases = 0 |
missCount = 0 missCount = 0 !
lastReturn = true lastReturn = true :
|
WFNR
> |
deadline ,r |
- |
pendingReleases = 0 N
missCount = 0 :
lastReturn = true |
|
|
release !
1
pendingReleases = 1 N |
missCount = 0 _L<} WFNR <- true
=) T
lastReturn = true pendingReleases = 0 AN |
missCount = 0 |
deadline lastReturn = true :
endingReleases = 0 N L | !
%isch?unt =1 _EDWFNR < false :
lastReturn = true pendingReleases = 0 & |
missCount = 0 |
—IW_F'\B lastReturn = false I
release | |
pendingReleases = 1 Ny
missCount = 0 :
lastReturn = false |
|
|
deadline !
1
pendingReleases = 1 N |
missCount = 1 !
lastReturn = false _'<} WFNR <-true -
pendingReleases = 0 & |
missCount = 0 |
release lastReturn = true :
pendingReleases = 1 & |
missCount = 0 —<_]_|wF R <- false |
lastReturn = false pendingReleases = 0 N :
missCount = 0 |
deadline lastReturn = false :
pendingReleases = 1 & _<_]_| WFNR <- false :
missCount = 1 pendingReleases = 0 B |
lastReturn = true missCount = 0 |
lastReturn = false :
WF
release T—’\B D
pendingReleases = 1 B _!_<} WENR <- true
m|ssC0unt_= 0 pendingReleases = 1 :
lastReturn = false missCount = 0 |
lastReturn = false !
WFNE :
|
|

RTSJ 2.0 (Final Draft) 87

6 Scheduling

Figure 6.2: A State Chart for a Realtime Thread without a Deadline Miss Handler

initial

4 Initial N

pendingReleases == 0

missCount == 0

deschedule == false

lastReturn == true

A&)

start()

f Normal Release \ / Blocked for Normal Release \

*release WFNR() called
increments pendingReleases [missCount == 0] missCount == 0

*deadline miss * release
increments missCount increments pendingReleases [deschedule == true]
* deschedule() [pendingReleases > 0] 0
sets deschedule decrement pendingReleases sets deschedule
*reschedule() WFNR() returns true
clears deschedule \ / [deschedule == false]
/ pendingReleases = 0

missCount = 0

WFNR() called
[missCount > 0]
[lastReturn == true]
decrement missCount

eturns false immediately WFNR() called
\ [missCount == 0]
(Handle Miss (Descheduled \

*release

increments pendingReleases deschedule == true
* deadline miss in WENR()

increments missCount *reschedule()
*deschedule() clears deschedule

sets deschedule
*reschedule()

clears deschedule /

WFNR() called
[missCount > 0]
[lastReturn == false]

(Blocked for Missed Release Missed Release \
SsCount> 0 [missCount > 0] el
IEE eI [astReturn == false] e S

pendingReleases > 0 increments pendingReleases

decrement pendingReleases

:{n WIFNRO decrement missCount *geadlme miss c
release WENR(Q) returns false increments missCount
increments pendingReleases *deschedule()

*deschedule() sets deschedule
sets deschedule *reschedule()

WFNR() called A
/ [missCount > 0]

[lasatReturn == false]

[deschedule == true]

release and blocked for missed release. It is only in these states that rescheduling
can occur, because only completion occurs upon their entry. In addition, the blocked
for missed release is a ephemeral state, since the deadline miss has already occurred
before the state is entered, so state is left immediately. It is there to enable all
actions that occur on completion.

88 RTSJ 2.0 (Final Draft)

Semantics 6.2

Figure 6.3: A State Chart for a Realtime Thread with a Deadline Miss Handler

initial

Initial

EendingReleases ==

descheduled == true

A

start()

4 N\

Normal Release

* release

increments pendingReleases
* deadline miss

releases miss handler

sets deschedule
*deschedule()

sets deschedule
* schedule()

clears deschedule

% reschedule()
(clear deschedule)

WFNR() called when
deschedule == false release causes

WFNR() to return true

N\ 4
Blocked for Normal Release Descheduled

descheduled == false
* release deschedule == true pendingReleases == 0

increments pendingReleases descheduled == true
* deschedule()

sets deschedule
o % o

6.2.1.3.4 Releasing an Asynchronous Event Handlers

Asynchronous event handlers can be associated with one or more asynchronous
events. When an asynchronous event is fired, all handlers associated with it are
released, according to the semantics below.

1. Each firing of an associated asynchronous event is an arrival. Unless the handler
has release parameters of type SporadicParameters, the arrival becomes a
release event for the handler in strict accordance with the semantics given in
“General Release Control” above. When the handler has release parameters of
type SporadicParameters, the arrival becomes a release event for the handler
in strict accordance with the semantics given in “Sporadic Release Control”
above.

2. For each release event that occurs for a handler, an entry is made in the
arrival-time queue and the handler’s fireCount is incremented by one.

3. Initially, a handler is considered to be blocked-for-release-event and its fire-
Count is zero.

4. Releases of a handler are serialized by having its handleAsyncEvent method

RTSJ 2.0 (Final Draft) 89

6 Scheduling

invoked repeatedly while its fireCount is greater than zero:
(a) before invoking handleAsyncEvent, the fireCount is decremented and
the front entry (when still present) removed from the arrival-time queue;
(b) each invocation of handleAsyncEvent, in this way, is a release;
(c) the return from handleAsyncEvent is the completion of a release; and
(d) processing of any exceptions thrown by handleAsyncEvent occurs prior
to completion.

5. The deadline for a release is relative to the release event time and determined
at the release event time according to the value of the deadline contained
in the handler’s release parameters. This value does not change, except as
described previously for handlers using a REPLACE policy for MIT violation
or arrival-time queue overflow.

6. The application code can directly modify the fireCount.

(a) The getAndDecrementPendingFireCount method decreases the fire-
Count by one (when it is greater than zero), and returns the old value.
This removes the front entry from the arrival-time queue but otherwise
has no effect on the scheduling of the current schedulable, nor the handler
itself. Any data parameter passed with the associated fire request is lost.

(b) The getAndClearPendingFireCount method is functionally equivalent to
invoking getAndDecrementPendingFireCount until it returns zero, and
returning the original fireCount value. Any data parameters passed with
the associated fire requests are lost.

7. The scheduler may delay the invocation of handleAsyncEvent to ensure that
the effective release time honors any restrictions imposed by the MIT violation
policy, when applicable, of that release event.

8. Cost monitoring and enforcement for an asynchronous event handler interacts
with release events and completions as previously defined with the added
requirement that at the completion of handleAsyncEvent, when the fireCount
is now zero, the cost monitoring and enforcement system is told to reset for
this handler.

6.2.1.4 Dispatching

The execution scheduling semantics described in this section are defined in terms of
a conceptual model that contains a set of queues of schedulables that are eligible for
execution. There is, conceptually, one queue for each scheduler eligibility on each
processor. No implementation structures are necessarily implied by the use of this
conceptual model. It is assumed that no time elapses during operations described
using this model, and therefore no simultaneous operations are possible.

The RTSJ dispatching model specifies its dispatching rules in terms of task priority
for priority schedulers, but other schedulers should act similarly with respect to their
own scheduler eligibility levels.

1. A Schedulable can become an executing schedulable only when it is eligible

for execution and one of the processors in its associated affinity is available.

2. When two schedulables have different active priorities and request the same

processor, the schedulable with the higher active priority will always execute
in preference to the schedulable with the lower value when both are eligible for

90 RTSJ 2.0 (Final Draft)

Semantics 6.2

10.

11.

execution.

Processors are allocated to schedulables based on each schedulable’s active
priority and their associated affinity.

Schedulable dispatching is the process by which one ready schedulable is
selected for execution on a processor. This selection is done at certain points
during the execution of a schedulable called schedulable dispatching points.

. A schedulable reaches a schedulable dispatching point whenever it becomes

blocked, when it terminates, or when a higher priority schedulable becomes
ready for execution on its processor. That is, a schedulable that is executing
will continue to execute until it either blocks, terminates or is preempted by a
higher-priority schedulable.

. The dispatching policy is specified in terms of ready queues and schedulable

states. The ready queues are purely conceptual; there is no requirement that
such lists physically exist in an implementation. A ready queue is an ordered
list of ready schedulable objects. The first position in a queue is called the
head of the queue, and the last position is called the tail of the queue.

A schedulable is ready when it is in a ready queue, or when it is running. Each
processor has one ready queue for each priority value. At any instant, each
ready queue of a processor contains exactly the set of schedulables of that
priority that are ready for execution on that processor, but are not running on
any processor; that is, those schedulables that are ready, are not running on
any processor, and can be executed using that processor.

. Each processor has one running schedulable, which is the schedulable currently

being executed by that processor. Whenever a schedulable running on a
processor reaches a schedulable dispatching point, a new schedulable object
is selected to run on that processor. The schedulable selected is the one at
the head of the highest priority nonempty ready queue for that processor; this
schedulable is then removed from all ready queues to which it belongs.

. In a multiprocessor system, a schedulable can be on the ready queues of more

than one processor. At the extreme, when several processors share the same set
of ready schedulables, the contents of their ready queues are identical, and so
they can be viewed as sharing one ready queue, and can be implemented that
way. Thus, the dispatching model covers multiprocessors where dispatching
is implemented using a single ready queue, as well as those with separate
dispatching domains.

The dispatching mechanism must enable the preemption of the execution of
schedulables and Java threads with a bounded delay at a point not governed
by the preempted object. The bound on this delay may be implementation-
defined, and could be the time to the next point in execution that the heap is
in a consistent state or some similar restriction. The implementation should
document this bound.

A schedulable that is preempted by a higher priority schedulable is placed in the
queue for its active priority, at a position determined by the implementation.
The implementation must document the algorithm used for such placement. It
is recommended that a preempted schedulable be placed at the front of the
appropriate queue.

RTSJ 2.0 (Final Draft) 91

6 Scheduling

12.

13.

14.

15.

A realtime thread that performs a yield() is placed at the tail of the queue
(dictated by its affinity) for its active priority level.

A blocked schedulable that becomes eligible for execution is added to the tail
of the queues (dictated by its affinity) for that priority. This behavior also
applies to the initial release of a schedulable.

A schedulable whose active priority is raised as a result of explicitly setting
its base priority (through the RealtimeThread setSchedulingParameters()
method, or Thread’s setPriority() method) is added to the tail of the queues
(dictated by its affinity) for its new priority level.

Queuing when priorities are adjusted by priority inversion avoidance algorithms
is governed by semantics specified in the Synchronization chapter.

6.2.1.5 Cost Monitoring and Cost Enforcement

The cost of a schedulable is defined by the value returned by invoking the getCost
method of the schedulable’s release parameters object. When a schedulable is initially
released, its current CPU consumption is zero, and as the schedulable executes, the
current CPU consumption increases. For cost monitoring, an implementation must
conform to the following requirements.

1.

2.

3.

4.

If, at any time, due to either execution of the schedulable or a change in the
schedulable’s cost, the current CPU consumption becomes greater than or
equal to the current cost of the schedulable, then a cost overrun is triggered.

The implementation is required to document the granularity at which the
current CPU consumption is updated.

When a cost overrun is triggered, the cost overrun handler associated with the
schedulable, if any, is released. No further action is taken.

The current CPU consumption is reset to zero when the schedulable is next
released (i.e. it moves from the blocked-for-release-event state to the eligible-
for-execution state).

When cost enforcement is supported, an implementation must conform to the
following requirements.

1.

92

When a cost overrun is triggered, in addition to releasing any cost overrun
handler, the following actions must be performed.
(a) When the most recent release of the schedulable is the i release, and the
t + 1 release event has not yet occurred, the following must hold.

i. When the state of the schedulable is either executing or eligible-for-
execution, the schedulable is placed into the state blocked-by-cost-
overrun. There may be a bounded delay between the time at which a
cost overrun occurs and the time at which the schedulable becomes
blocked-by-cost-overrun.

ii. Otherwise, the schedulable must have been blocked for a reason
other than blocked-by-cost-overrun. In this case, the state change to
blocked-by-cost-overrun is left pending; when the blocking condition
for the schedulable is removed, then its state changes to blocked-by-
cost-overrun. There may be a bounded delay between the time at
which the blocking condition is removed and the time at which the
schedulable becomes blocked-by-cost-overrun.

RTSJ 2.0 (Final Draft)

Semantics 6.2

(b) When the most recent release of the schedulable is the i’ release, and the
1 + 1 release event has occurred, the current CPU consumption is set to
zero, the schedulable remains in its current state, and the cost monitoring
system considers the most recent release to be the ¢ + 1 release.

2. When the i release event occurs for a schedulable, the action taken depends
on the state of the schedulable.

(a) When the schedulable is blocked-by-cost-overrun then the cost monitoring
system considers the most recent release to be the " release, the current
CPU consumption is set to zero and the schedulable is made eligible for
execution;

(b) When the schedulable is blocked for a reason other than blocked-by-cost-
overrun then

i. when there is a pending state change to blocked-by-cost-overrun then
the pending state change is removed, the cost monitoring system
considers the most recent release to be the i*" release, the current
CPU consumption is set to zero, and the schedulable remains in its
current blocked state;

ii. otherwise, no cost monitoring action occurs.

(¢) When the schedulable is not blocked, no cost monitoring action occurs.

3. When the i'" release of a schedulable completes, and the cost monitoring system
considers the most recent release to be the i release, then the current CPU
consumption is set to zero and the cost monitoring system considers the most
recent release to be the i 4+ 1 release. Otherwise, no cost monitoring action
occurs.

4. Changes to the cost parameter take effect immediately.

(a) When the new cost is less than or equal to the current CPU consumption,
and the old cost was greater than the current CPU consumption, then a
cost overrun is triggered.

(b) When the new cost is greater than the current CPU consumption,

i. in the case that the schedulable is blocked-by-cost-overrun, the sched-
ulable is made eligible for execution;

ii. in the case that the schedulable is blocked for a reason other than
blocked-by-cost-overrun and there is a pending state change to blocked-
by-cost-overrun, the pending state change is removed;

iii. in all other cases, no cost monitoring action occurs.

5. When a schedulable changes state to blocked-by-cost-overrun, it must behave
as if its base priority has been reduced to the enforced priority. In other words,
unless its active priority has been modified by a priority inversion avoidance
algorithm as defined in this specification, it should not be scheduled on any
CPU. Upon moving out of this state, it will resume execution as if its base
priority had been restored to its configured base priority.

6. The state of the cost monitoring system for a schedulable can be reset by
the scheduler (see 6.2.1.3.2 in the Release of a Realtime Thread section,
below). When the most recent release of the schedulable is considered to be
the m!" release and the most recent release event for the schedulable was the
n'h release event (where n > m), a reset causes the cost monitoring system to

RTSJ 2.0 (Final Draft) 93

6 Scheduling

consider the most recent release to be the n** release, and to zero the current
CPU consumption.

6.2.2 Priority Schedulers

This specification defines a class of scheduler that are priority preemptive. Their
semantics assumes a uniprocessor or shared memory multiprocessor execution envi-
ronment. Initially, only the base scheduler is defined. Later specifications may add
other priority preemptive scheduler such as a round-robin scheduler.

The semantics for the base scheduler is priority preemptive with run to com-
pletion semantics, also known as first-in-first-out (FIFO) semantics: FirstIn-
FirstOutScheduler. The base scheduler supports the execution of all schedulables.
When a schedulable managed by the base scheduler is scheduled, it will run either
until it blocks (as on a monitor or for some I/O operation), voluntarily relinquishes
the CPU (as for sleep), or is preempted by a higher priority task.

The scheduler is not responsible for ensuring that a release, such as an event
handler, will complete within the quantum. A release which would run longer than
its quantum will be rescheduled at the end of that quantum, when another task with
the same priority is ready to run, even if it has not completed. When this is not the
desired behavior, the FirstInFirstOutScheduler should be used instead.

6.2.2.1 Priorities

Not only the presence or absence of a time quantum, but also the semantics for
scheduling eligibility differ between the base (FIFO) and round-robin schedulers.
Both schedulers use a numerical priority value to determine scheduling eligibility.
A higher value means a higher scheduler eligibility and a lower one means a lower
scheduler eligibility. Although the values themselves have the same relative meaning
between the two schedulers, the details of their semantics vary.

6.2.2.2 First-In-First-Out-Scheduler

The base scheduler is a priority scheduler with the following requirements.

1. The base scheduler must able to support at least 28 distinct values? (realtime
priorities) that can be stored in an instance of PriorityParameters in addi-
tion to the values 1 through 10 required to support the priorities defined by
java.lang.Thread.

2. The realtime priority values must be greater than 10, and they must include
all integers from the base scheduler’s getMinPriority() value to its getMax-
Priority() value inclusive.

3. Higher priority values in an instance of PriorityParameters have a higher
execution eligibility.

4. The 10 priorities defined for java.lang.Thread must effectively have lower
execution eligibility than the realtime priorities.

2A system may be configured to have fewer, when few are required.

94 RTSJ 2.0 (Final Draft)

Semantics 6.2

10.

11.

12.

13.

1
2
3

. When the round-robin scheduler is present, the base scheduler must support

at least one priority value numerically greater than the maximum allowable
round-robin priority.

. For realtime scheduling, the base priority of each Schedulable under the

control of the base scheduler must be from the range of realtime priorities. A
Schedulable with a priority in the java.lang.Thread range will be scheduled
as if it were an instance of java.lang.Thread.

Assignment of any of the realtime priority values to any Schedulable controlled
by the base priority scheduler is legal. It is the responsibility of application
logic to make rational priority assignments.

. The base scheduler does not use the importance value in the ImportancePa-

rameters subclass of PriorityParameters.

Calling the java.lang.Thread.setPriority on a thread can only be used to

set the thread’s priority to a conventional Java priority (1-10).

For schedulables managed by the base scheduler, the implementation must not

change the execution eligibility for any reason other than

(a) the implementation of a priority inversion avoidance algorithm requires it,
or
(b) as a result of a program’s request to change the priority parameters

associated with one or more schedulables; e.g., by changing a value in a
scheduling parameter object that is used by one or more schedulables, or
by using setSchedulingParameters() to give a schedulable a different
SchedulingParameters value.

Use of Thread.setPriority(), or any of the methods defined for schedula-

bles, or any of the methods defined for parameter objects must not affect

the correctness of the priority inversion avoidance algorithms controlled by

PriorityCeilingEmulation and PriorityInheritance—see Chapter7.

When schedulable A, managed by the base scheduler, creates Java thread B,

then the initial base priority of B is the minimum of the priority value returned

by the getMaxPriority method of B’s java.lang.ThreadGroup object and

the priority of A.

PriorityScheduler.getNormPriority() shall be set to

((PriorityScheduler.getMaxPriority() -
PriorityScheduler.getMinPriority()) / 3) +
PriorityScheduler.getMinPriority()

6.2.2.3 The Round-Robin Scheduler

Priorities in the round-robin scheduler are as in the base scheduler, and priority
values are numerically equivalent between the two. Schedulables managed by the
round-robin scheduler behave as if they are scheduled from the same FIFO queue as
schedulables managed by the base scheduler of the same numeric priority, except
that they will consume no more than one quantum of execution time before being
moved to the tail of the queue. Implementations are permitted to use a single, shared
queue for this purpose.

RTSJ 2.0 (Final Draft) 95

6 Scheduling

If the round-robin scheduler is present, its priorities will have the same properties

as the base scheduler, except for the following.

1. The round-robin scheduler must support at least one priority, and may support
an arbitrarily large number of priorities.

2. All round-robin priorities must be greater than 10, and they must include
all integers from the round-robin scheduler’s getMinPriority() value to its
getMaxPriority() value, inclusive.

3. The round-robin scheduler does not use the importance value in the Impor-
tanceParameters subclass of PriorityParameters.

4. RoundRobinScheduler.getNormPriority () shall be set to

1 ((RoundRobinScheduler.getMaxPriority() -
2 RoundRobinScheduler.getMinPriority()) / 3) +
3 RoundRobinScheduler.getMinPriority()

The round-robin scheduler may provide priorities strictly lower than that of the
base scheduler or a set of priorities partially or entirely overlapping with the priorities
provided by the base scheduler.

6.2.2.4 Parameter Values

The parameter values used by the priority schedulers shall have the following scheduler-
specific properties.
1. The default scheduling parameter values for parameter objects created by a
schedulable controlled by the priority schedulers are given by the following
table (see FirstInFirstOutScheduler).

Attribute Default Value
Scheduling parameters
affinity inherited from creating task
Priority parameters
priority norm priority

2. For a task changing its own SchedulingParameters, the change shall take
effect immediately.

3. For a task Changing another task’s SchedulingParameters, when the other
task is in the running state, the change shall take effect as soon as practical
and, when the other task is in any other execution state, the change will take
effect immediately.

6.2.3 Associating Schedulables with Schedulers

The Scheduler associated with a Schedulable at the time it is started is derived
from its scheduler setting and scheduler parameters, as well as the scheduler of
the task, instance of Thread or Schedulable, that started it. The start time of
a RealtimeThread is the time at which its RealtimeThread.start() method is
invoked, and the start time of an event handler is the time at which it is attached to
an event with AsyncBaseEvent.addHandler ().

96 RTSJ 2.0 (Final Draft)

Semantics 6.2

For the following discussion, let si be the instance of Schedulable being started,
parent be the task from which it is started, ns be some arbitrary scheduler, and sg
be the RealtimeThreadGroup instance associated with si. The Scheduler for si is
determined as follows and in the order stated.

1. When Scheduler.setScheduler(ns) has been used to explicitly configure a

scheduler for si, that scheduler will be the scheduler associated with si.

2. When parent is an instance of Schedulable and the scheduler associated with
parent is an instance of the class returned by sg.getScheduler(), then the
scheduler associated with si will be the scheduler associated with parent.

3. When parent is not an instance of Schedulable (i.e., it is a Java Thread)
but is currently scheduled with a realtime Scheduler and that scheduler is
an instance of the class returned by sg.getScheduler (), then si will use the
scheduler currently associated with parent.

4. When the default scheduler is an instance of the class returned by
sg.getScheduler (), then si will use the default scheduler.

5. When none of these conditions hold, a scheduler cannot be determined for si
and an IllegalStateException will be thrown.

A task that is eligible for execution must always have a compatible Scheduler
and SchedulingParameters. This means that appropriate configuration objects
must be passed in at construction time, and that all later changes must be compatible;
if both the Scheduler and SchedulingParameters must be changed in such a way
that neither is compatible with the current configuration, setScheduler may be
called on the Schedulable with both a scheduler and compatible parameters passed
at the same time.

In order to change a task’s scheduler to one that is inconsistent with its Sched-
ulingParameter or visa versa, it must be in the the descheduled state. This
compatibility must be restored before the task becomes eligible for execution. For
RealtimeThread, rescheduling will throw an IllegalTaskStateException when
called on a Schedulable with scheduling parameters that are inconsistent with its
scheduler. Likewise, since adding a handler to its first event makes it eligible to
be fired and hence eligible to be executed, trying to add a handler with Schedu-
lingParameters that do not match its scheduler to an event will also result in an
IllegalTaskStateException being thrown.

6.2.4 Managing Groups of Schedulables

Conventional Java provides the class ThreadGroup to manage groups of threads.
Only minimal functionality is provided: limiting priority, setting daemon status, and
interrupting a group of threads at once. RTSJ extends this concept in two ways:
limiting CPU affinity on an instance of ThreadGroup through the Affinity class
and providing subclasses for managing Schedulables.

6.2.4.1 Realtime Thread Groups

The RealtimeThreadGroup subclass of ThreadGroup provides a means of constrain-
ing the possible scheduling parameters and scheduler of tasks. The setMaxPriority
method on ThreadGroup only pertains to tasks scheduled in the conventional Java

RTSJ 2.0 (Final Draft) 97

6 Scheduling

range (1-10), and not to tasks scheduled with a realtime scheduler. To ensure that
this works and that conventional thread groups must not need to be scope aware, an
implementation must enforce several restrictions:

1. only threads in a realtime thread group may use a realtime scheduler,

2. instances of RealtimeThread may only be created in a realtime thread group,

3. the root ThreadGroup instance must be an instance of RealtimeThreadGroup,

4. the ThreadGroup instance of the initial thread must be an instance of Real-
timeThreadGroup,

5. an instance of RealtimeThreadGroup may not have a parent that is not an
instance of RealtimeThreadGroup, and

6. all groups contained in a RealtimeThreadGroup allocated in a ScopedMemory
must be instances of RealtimeThreadGroup.

Furthermore, the enumeration methods on a realtime thread group are not aware
of scoped memory and the referential integrity restrictions discussed in Chapter 11,
Alternative Memory Areas. The enumeration methods of RealtimeThreadGroup
will not return references to any Thread that is also a RealtimeThread and to any
ThreadGroup that is also a RealtimeThreadGroup. This ensures that decendants
allocated in a ScopedMemory will not need to be referenced from an enumation object
allocated in an incompatible allocation context. Since the enumeration object is
allocated in the current allocation context, only conventional threads are guaranteed
to be referencable. For processing RealtimeThreadGroup instances, a visitor should
be used.

The maximum priority and scheduler restrictions on RealtimeThreadGroup and
ThreadGroup apply only to the base priority of a task belonging to that group.
Priority inversion avoidance algorithms (see Chapter 7, Synchronization) may cause
a task to temporarily obtain a priority notionally higher than its maximum base
priority as specified in its associated instance of ThreadGroup.

A maximum eligibility is provided for capping realtime priorities, but this
can only be set once a scheduler type is set that limits the Scheduling-
Parameters to a set of comparable types. Changing the maximum eligi-
bility allowed to tasks in a RealtimeThreadGroup via the RealtimeThread-
Group.setMaxEligibility(SchedulingParameters) method takes effect immedi-
ately, and will do the following.

1. For any task t in the affected RealtimeThreadGroup that is associated with a
SchedulingParameters not allowable under the new eligibility restriction, set
the SchedulingParameters associated with t to the SchedulingParameters
currently being set by setMaxEligibility().

2. For any RealtimeThreadGroup child sg of the affected RealtimeThreadGroup
that has a maximum eligibility not allowed under the new eligibility restriction,
set the maximum eligibility of sg to the SchedulingParameters currently
being set by setMaxEligibility(). Note that this will recursively effect the
tasks and RealtimeThreadGroup children in sg.

98 RTSJ 2.0 (Final Draft)

Schedulable javazx.realtime 6.3

6.3 javax.realtime

6.3.1 Interfaces
6.3.1.1 BoundSchedulable

public interface BoundSchedulable

Interfaces
javax.realtime.Schedulable

Description

A marker interface to provide a type safe reference to all schedulables that are
bound to a single underlying thread. A RealtimeThread is by definition bound.

Since RTSJ 2.0

6.3.1.2 Schedulable

public interface Schedulable

Interfaces
Runnable
javax.realtime.Subsumable

Description

An interface for all types of task defined in this specification. All implementations
of Schedulable can be scheduled by any Scheduler defined here. A scheduler
uses the information available through this interface to create a suitable context
in which to execute the code encapsulated by this object.

6.3.1.2.1 Methods

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters ()

Description

Gets a reference to the MemoryParameters object for this schedulable.

Returns
a reference to the current MemoryParameters object.

RTSJ 2.0 (Final Draft) 99

6 Scheduling Schedulable

setMemoryParameters(MemoryParameters)
Signature
public javax.realtime.Schedulable
setMemoryParameters (MemoryParameters memory)

Description

Sets the memory parameters associated with this instance of Schedulable.
This change becomes effective at the next allocation; on multiprocessor systems,
there may be some delay due to synchronization between processors.

Parameters
memory—A MemoryParameters object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)
Throws
StaticIllegalArgumentException—when memory is not compatible with the
schedulable’s scheduler. Also when this schedulable may not use the heap and
memory is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.
Returns
this

Since RTSJ 2.0 returns itself

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters<?>
getReleaseParameters ()

Description

Gets a reference to the ReleaseParameters object for this schedulable.

Returns
a reference to the current ReleaseParameters object.

setReleaseParameters(ReleaseParameters)
Signature
public javax.realtime.Schedulable
setReleaseParameters(ReleaseParameters<?> release)

Description

Sets the release parameters associated with this instance of Schedulable.
This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may

100 RTSJ 2.0 (Final Draft)

Schedulable javazx.realtime 6.3

be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release—A ReleaseParameters object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)
Throws
StaticIllegalArgumentException—when release is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
release is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.

IllegalTaskStateException—when the task is running and the new release pa-
rameters are not compatible with the current scheduler.

Returns
this

Since RTSJ 2.0 returns itself

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler ()

Description

Gets a reference to the Scheduler object for this schedulable.

Returns
a reference to the associated Scheduler object.

setScheduler(Scheduler)
Signature
public javax.realtime.Schedulable
setScheduler (Scheduler scheduler)
throws StaticSecurityException,
IllegalTaskStateException

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

RTSJ 2.0 (Final Draft) 101

6 Scheduling Schedulable

Parameters

scheduler—A reference to the scheduler that will manage execution of this sched-

ulable. Null is not a permissible value.
Throws

StaticIllegalArgumentException—when scheduler is null, or the schedul-
able’s existing parameter values are not compatible with scheduler. Also
when this schedulable may not use the heap and scheduler is located in heap
memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

StaticSecurityException—when the caller is not permitted to set the scheduler
for this schedulable.

IllegalTaskStateException—when scheduler has scheduling or release param-

eters that are not compatible with the new scheduler and this schedulable is
running.

Returns
this

Since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)
Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memoryParameters)

Description

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters

scheduler—A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.

scheduling—A reference to the SchedulingParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

102 RTSJ 2.0 (Final Draft)

Schedulable javazx.realtime 6.3

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws

StaticIllegalArgumentException—when scheduler is null or the parameter
values are not compatible with scheduler. Also thrown when this schedulable
may not use the heap and scheduler, scheduling release, memoryParame-
ters, or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

StaticSecurityException—when the caller is not permitted to set the scheduler
for this schedulable.

Returns
this

Since RTSJ 2.0

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description

Gets a reference to the SchedulingParameters object for this schedulable.

Returns
A reference to the current SchedulingParameters object.

setSchedulingParameters(SchedulingParameters)
Signature
public javax.realtime.Schedulable
setSchedulingParameters(SchedulingParameters scheduling)
throws IllegalTaskStateException,
IllegalAssignmentError,
StaticIllegalArgumentException

Description

Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
of the scheduler for details.

Parameters

RTSJ 2.0 (Final Draft) 103

6 Scheduling Schedulable

scheduling—A reference to the SchedulingParameters object. When null, the
default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.). When the
Affinity is not defined in scheduling, then the affinity that will be used is the
one of the creating Thread. However, this default affinity will not appear when
calling getSchedulingParameters, unless explicitly set using this method.

Throws

StaticIllegalArgumentException—when scheduling is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalTaskStateException—when the task is active and the new scheduling
parameters are not compatible with the current scheduler or when the task is
active and the affinity in scheduling is not a subset of the affinity of this
object’s RealtimeThreadGroup or when the task is active and the affinity in
scheduling is invalid.

Returns
this

Since RTSJ 2.0, method returns a reference to this.

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Gets a reference to the ConfigurationParameters object for this schedulable.

Returns
a reference to the associated ConfigurationParameters object.

Since RTSJ 2.0

setDaemon(boolean)
Signature
public void
setDaemon (boolean on)

Description

Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemons. This method must
be called before the task is attached to any event or started. Once attached or
started, it cannot be changed.

Parameters

104 RTSJ 2.0 (Final Draft)

Schedulable javazx.realtime 6.3

on—When true, marks this event handler as a daemon handler.
Throws
IllegalThreadStateException—when this schedulable is active.

StaticSecurityException—when the current schedulable cannot modify this
event handler.

Since RTSJ 2.0

isDaemon
Signature
public boolean
isDaemon ()

Description

Tests if this event handler is a daemon handler.

Returns
true when this event handler is a daemon handler; false otherwise.

Since RTSJ 2.0

mayUseHeap
Signature
public boolean
mayUseHeap ()

Description

Determines whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the
Heap.

Since RTSJ 2.0

subsumes(Schedulable)

Signature
public boolean
subsumes (Schedulable other)

Description

Determine whether or not this instance of Schedulable is more eligible than
other. On multicore systems, this only gives a partial ordering over all schedula-
bles. Schedulables with disjoint processor affinity do not subsume one another.

Returns
true when and only when this instance of Schedulable is more eligible than other.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 105

6 Scheduling MinimumInterarrivalPolicy

6.3.2 Enumerations

6.3.2.1 MinimumlInterarrivalPolicy

public enum MinimumlInterarrivalPolicy

Inheritance

java.lang.Object
java.lang. Enum<MinimumInterarrivalPolicy >
MinimumlInterarrivalPolicy

Description

Defines the set of policies for handling interarrival time violations in Sporadic-
Parameters. Each policy governs every instance of Schedulable which has
SporadicParameters with that minimum interarrival time policy.

Since RTSJ 2.0

6.3.2.1.1 Enumeration Constants

EXCEPT
public static final MinimumInterarrivalPolicy EXCEPT

Description

Represents the "EXCEPT" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last
release time plus its minimum interarrival time, the fire () method shall throw
a preallocated instance of MITViolationException.

IGNORE

public static final MinimumInterarrivalPolicy IGNORE

Description

Represents the "IGNORE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last release
time plus its minimum interarrival time, the new arrival time is ignored.

REPLACE
public static final MinimumInterarrivalPolicy REPLACE

Description

106 RTSJ 2.0 (Final Draft)

MinimumlInterarrivalPolicy javazx.realtime 6.3

Represents the "REPLACE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last release
time plus its minimum interarrival time, the information for this arrival replaces
a previous arrival. For cases when the previous event has already been released
or the event queue has a length of zero, the arrival is ignored as with the IGNORE
policy.

SAVE

public static final MinimumInterarrivalPolicy SAVE

Description

Represents the "SAVE" policy for minimum interarrival time. Under this policy,
when an arrival time of a release occurs at a time less than the last release
time plus its minimum interarrival time, the new release is queued until the last
release time plus its minimum interarrival time is reached, but its deadline is not
changed.

6.3.2.1.2 Methods

values

Signature
public static javax.realtime.MinimumInterarrivalPolicy[]
values ()

Description

valueOf(String)

Signature
public static javax.realtime.MinimumInterarrivalPolicy
valueOf (String name)

Description

value(String)

Signature
public static javax.realtime.MinimumInterarrivalPolicy
value(String value)

Description

RTSJ 2.0 (Final Draft) 107

6 Scheduling QueueOverflowPolicy

Converts a string into a policy type.

Parameters

value—is the string to convert.
Returns

the corresponding policy type.

6.3.2.2 QueueOverflowPolicy

public enum QueueOverflowPolicy

Inheritance

java.lang.Object
java.lang. Enum<QueueOverflowPolicy >
QueueOverflowPolicy

Description

Defines the set of policies for handling overflow on event queues used by Re-
leaseParameters. An event queue holds a number of event arrival times with
any respective payload provided with the event. A reference to the event itself
is only held when it happens to be the payload, e.g., for an AsyncObjectEvent
associated with a Timer.

Since RTSJ 2.0

6.3.2.2.1 Enumeration Constants

DISABLE
public static final QueueOverflowPolicy DISABLE

Description

Represents the "DISABLE" policy which means, when an arrival occurs, no
queuing takes place, thus no overflow can happen. This policy is for instances of
ActiveEvent with no payload and instances of RealtimeThread with Periodic-
Parameters. In contrast to IGNORE, all incoming events increment the pending
fire or release count, respectively. For this reason, it may not be used with an
event handler that supports an event payload or any instance of Schedulable
with SporadicParameters. This policy is also the default for PeriodicParam-
eters. Instances of RealtimeThread with null release parameters have this
policy implicitly, as they do not have an event queue either.

108 RTSJ 2.0 (Final Draft)

QueueOverflowPolicy javax.realtime 6.3

EXCEPT
public static final QueueOverflowPolicy EXCEPT

Description

Represents the "EXCEPT" policy which means, when an arrival occurs and its
event time and payload should be queued but the queue already holds a number
of event times and payloads equal to the initial queue length, the fire () method
shall throw an ArrivalTimeQueueOverflowException. When fire is used within
a Timer, the exception is ignored and the fire does nothing, i.e., it acts the same
as “IGNORE”.

IGNORE
public static final QueueOverflowPolicy IGNORE

Description

Represents the "IGNORE" policy which means, when an arrival occurs and its
event time and payload should be queued, but the queue already holds a number
of event times and payloads equal to the initial queue length, the arrival is ignored.

REPLACE
public static final QueueOverflowPolicy REPLACE

Description

Represents the "REPLACE" policy which means, when an arrival occurs and
should be queued but the queue already holds a number of event times and
payloads equal to the initial queue length, the information for this arrival replaces
a previous arrival. When the queue length is zero, the behavior is the same as
the "IGNORE" policy.

SAVE
public static final QueueQOverflowPolicy SAVE

Description

Represents the "SAVE" policy which means, when an arrival occurs and should
be queued but the queue is full, the queue is lengthened and the arrival time and
payload are saved. This policy does not update the'initial queue length" as it
alters the actual queue length. Since the SAVE policy grows the arrival time queue
as necessary, for the SAVE policy the initial queue length is only an optimization.
It is also the default for AperiodicParameters.

6.3.2.2.2 Methods

RTSJ 2.0 (Final Draft) 109

6 Scheduling Affinity

values

Signature
public static javax.realtime.QueueOverflowPolicy[]
values ()

Description

valueOf(String)

Signature
public static javax.realtime.QueueOverflowPolicy
valueOf (String name)

Description

value(String)

Signature
public static javax.realtime.QueueOverflowPolicy
value(String value)

Description
Converts a string into a policy type.

Parameters

value—is the string to convert.
Returns

the corresponding policy type.

6.3.3 Classes
6.3.3.1 Affinity

public class Affinity

Inheritance

java.lang.Object
Affinity

Interfaces
Cloneable
Serializable

Description

110 RTSJ 2.0 (Final Draft)

Affinity javazx.realtime 6.3

This is class for specifying processor affinity. It includes a factory that generates
Affinity objects. With it, the affinity of every task in a JVM can be controlled.

An affinity is a set of processors that can be associated with certain types of
tasks. Each task can be associated with an affinity via its SchedulingParameters.
Groups of these can be assigned an affinity through their RealtimeThreadGroup.

The processor membership of an affinity is immutable. The tasks associations
of an affinity are mutable. The internal representation of a set of processors
in an Affinity instance is not specified, but the representation that is used to
communicate with this class is a BitSet where each bit corresponds to a logical
processor ID. The relationship between logical and physical processors is beyond
the scope of this specification, and may change.

The set of affinities created at startup (the predefined set) is visible through
the getPredefinedAffinities(Affinity[]) method. Only the Affinities made
available at startup and the Affinities generated using generate (BitSet) but
with a cardinality of one may be used as parameters for schedulables. These are
referred to as
emph{valid} affinities. However, it is still possible to create Affinity instances
that are not equals to the ones defined at startup and with a cardinality more
than one using generate (BitSet). These affinities are not considered to be valid
as they can not be used as parameters for schedulables. The purpose of these
invalid affinities is to be used as parameter if a RealtimeThreadGroup instance
to limit the processors available to its members.

There is no public constructor for this class. All instances must be created by
the factory method (generate).

Since RTSJ 2.0

6.3.3.1.1 Methods

getPredefined AffinitiesCount
Signature
public static final int
getPredefinedAffinitiesCount ()

Description

Determines the minimum array size required to store references to all the prede-
fined processor affinities.

Returns
the minimum array size required to store references to all the predefined affinities.

getPredefined Affinities

Signature

RTSJ 2.0 (Final Draft) 111

6 Scheduling Affinity

public static final javax.realtime.Affinity[]
getPredefinedAffinities()

Description

Equivalent to invoking getPredefinedAffinitySets(null).

Returns
an array of the predefined affinities.

getPredefined Affinities(Affinity)

Signature
public static final javax.realtime.Affinity[]
getPredefinedAffinities(Affinity[] dest)

Description

Determines what affinities are predefined by the Java runtime.

Parameters
dest—The destination array, or null.
Throws
StaticIllegalArgumentException—when dest is not large enough.

Returns
dest or a newly created array when dest is null, populated with references to the
predefined affinities. When dest has excess entries, those entries are filled with
null.

isSet AffinitySupported
Signature
public static final boolean
isSetAffinitySupported()

Description

Determines whether or not affinity control is supported.

Returns
true when more than one affinity set is available.

generate(BitSet)

Signature
public static final javax.realtime.Affinity
generate(BitSet set)

Description

112 RTSJ 2.0 (Final Draft)

Affinity javazx.realtime 6.3

Determines the Affinity corresponding to a BitSet, where each bit in set rep-
resents a CPU. When BitSet does not correspond to a predefined affinity or
an affinity with a cardinality of one, the resulting Affinity instance is not a
valid affinity and can only be used for limiting the CPUs that can be used by a
RealtimeThreadGroup. The method isValid can be used to determine whether
or not the result is a valid affinity.

Platforms that support specific affinities will register those Affinity instances
with Affinity. They appear in the arrays returned by getPredefinedAffini-
ties() and getPredefinedAffinities(Affinity[]).

Parameters
set—The BitSet to convert into an Affinity.
Throws
StaticIllegalArgumentException—when set is null or when set is empty.

Returns
the resulting Affinity.

getRoot Affinity

Signature
public static final javax.realtime.Affinity
getRootAffinity ()

Description

Gets the root Affinity: the Affinity that can be used to allow a schedulable to
run on all the processing units available to the VM.

Returns
the root Affinity.

get Affinity (Thread)

Signature
public static javax.realtime.Affinity
getAffinity(Thread thread)

Description

Obtain the affinity of the current thread.

Throws
StaticIllegalArgumentException—when the affinity is not valid.

Returns
the affinity of this thread context.

RTSJ 2.0 (Final Draft) 113

6 Scheduling Affinity

getCurrent Affinity

Signature
public static javax.realtime.Affinity
getCurrentAffinity()

Description

Obtain the affinity of the current thread.

Returns
the affinity of this thread context.

get AvailableProcessors

Signature
public static final java.util.BitSet
getAvailableProcessors()

Description

This method is equivalent to getAvailableProcessors(BitSet) with a null
argument. In systems where the set of processors available to a process is dynamic,
e.g., system management operations or fault tolerance capabilities can add or
remove processors, the set of available processors shall reflect the processors that
are allocated to the RTSJ runtime and are currently available to execute tasks.

Returns
a BitSet representing the set of processors currently valid for use in the BitSet
argument to generate(BitSet).

get AvailableProcessors(BitSet)
Signature
public static final java.util.BitSet
getAvailableProcessors(BitSet dest)

Description

In systems where the set of processors available to a process is dynamic (e.g.,
because of system management operations or because of fault tolerance capabili-
ties), the set of available processors shall reflect the processsors that are allocated
to the RTSJ runtime and are currently available to execute tasks.

Parameters
dest—When dest is non-null, use dest as the returned value. When it is null,
create a new BitSet.
Returns
a BitSet representing the set of processors currently valid for use in the bitset
argument to generate(BitSet).

114 RTSJ 2.0 (Final Draft)

Affinity javazx.realtime 6.3

isAffinityChangeNotificationSupported
Signature
public static final boolean
isAffinityChangeNotificationSupported()

Description

Determines whether or not the system can trigger an event for notifying the
application when the set of available CPUs changes.

Returns
true when change notification is supported. (See setProcessorAddedE-
vent (AsyncEvent) and setProcessorRemovedEvent (AsyncEvent).)

getProcessorAddedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorAddedEvent ()

Description

Gets the event used for CPU addition notification.

Returns
the async event that will be fired when a processor is added to the set available to
the JVM. Returns null when change notification is not supported, or when no
async event has been designated.

setProcessorAddedEvent(AsyncEvent)
Signature
public static void
setProcessorAddedEvent (AsyncEvent event)
throws StaticUnsupportedOperationException,
StaticIllegalArgumentException

Description

Sets the AsyncEvent that will be fired when a processor is added to the set
available to the JVM.

Parameters
event—The async event to fire in case an added processor is detected, or null to
cause no async event to be called in case an added processor is detected.
Throws
StaticUnsupportedOperationException—when change notification is not sup-
ported.

StaticIllegalArgumentException—when event is not in immortal memory.

RTSJ 2.0 (Final Draft) 115

6 Scheduling Affinity

getProcessorRemovedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorRemovedEvent ()

Description

Gets the event used for CPU removal notification.

Returns
the async event that will be fired when a processor is removed from the set available
to the JVM. Returns null when change notification is not supported, or when
no async event has been designated.

setProcessorRemovedEvent (AsyncEvent)

Signature
public static void
setProcessorRemovedEvent (AsyncEvent event)

Description

Sets the AsyncEvent that will be fired when a processor is removed from the set
available to the JVM.

Parameters
event—Called when a processor is removed.
Throws
StaticUnsupportedOperationException—when change notification is not sup-
ported.
StaticIllegalArgumentException—when event is not null or in immortal mem-
ory.

getProcessors

Signature
public final java.util.BitSet
getProcessors()

Description

Obtains a BitSet representing the processor affinity set for this Affinity.

Returns
a newly created BitSet representing this Affinity.

116 RTSJ 2.0 (Final Draft)

Affinity javazx.realtime 6.3

getProcessors(BitSet)
Signature
public final java.util.BitSet
getProcessors(BitSet dest)

Description

Determines the set of CPUs representing the processor affinity of this Affinity.

Parameters
dest—Set dest to the BitSet value. When dest is null, create a new BitSet in
the current allocation context.
Returns
a BitSet representing the processor affinity set of this Affinity.

isProcessorInSet (int)

Signature
public final boolean
isProcessorInSet (int processorId)

Description

Asks whether a processor is included in this affinity set.

Parameters

processorId—A number identifying a single CPU in a multiprocessor system.
Returns

true when and only when processorNumber is represented in this affinity set.

getProcessorCount
Signature
public int
getProcessorCount ()

Description

Determines the number of CPUs in this affinity

Returns
the number of CPUs.

isValid

Signature
public boolean
isValid()

Description

RTSJ 2.0 (Final Draft) 117

6 Scheduling AperiodicParameters

Determine whether or not the affinity can be used for scheduling or just for
limiting the processors available to members of RealtimeThreadGroup.

Returns
true when valid for scheduling and false otherwise.

subsumes(Affinity)
Signature

public boolean

subsumes (Affinity other)

Description
Determines whether or not other is equal to or a proper subset of this affinity.

Parameters
other—The other affinity with which to compare
Returns
true Only when the affinity in parameter is a equal to or a proper subset of this
affinity.

clone

Signature
public java.lang.Object
clone()

6.3.3.2 AperiodicParameters

public class AperiodicParameters

Inheritance

java.lang.Object
ReleaseParameters<AperiodicParameters>
AperiodicParameters

Description

When a reference to an AperiodicParameters object is given as a parameter
to a schedulable’s constructor or passed as an argument to one of the sched-
ulable’s setter methods, the AperiodicParameters object becomes the release
parameters object bound to that schedulable. Changes to the values in the
AperiodicParameters object affect that schedulable. When bound to more than
one schedulable, changes to the values in the AperiodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

Only changes to an AperiodicParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For

118 RTSJ 2.0 (Final Draft)

AperiodicParameters javazx.realtime 6.3

instance, calling setCost on an AperiodicParameters object will make the
change, then notify the scheduler that the parameter object has changed. At that
point the object is reconsidered for every schedulable that uses it. Invoking a
method on the RelativeTime object that is the cost for this object may change
the cost but it does not pass the change to the scheduler at that time. That
change must not change the behavior of the schedulables that use the parameter
object until a setter method on the AperiodicParameters object is invoked,
the parameter object is used in setReleaseParameters(), or it is used in a
constructor for a schedulable.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost ()
must be the same object passed in by setCost(), but any changes made to the time
value of the cost must not take effect in the associated AperiodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

Correct initiation of the deadline miss and cost overrun handlers requires
that the underlying system know the arrival time of each aperiodic task. For an
instance of RealtimeThread the arrival time is the time at which the start () is
invoked. For other instances of Schedulable, the required behavior may force
the implementation to act effectively as if it maintained a queue of arrival times.

When the release parameters for a RealtimeThread are set to an instance of
this class or one of its subclasses, the thread does not start executing code until
the RealtimeThread.release() method is called.

The following table gives the default values for the constructors parameters.

Table 6.3: AperiodicParameters Default Values

Attribute Value
cost new RelativeTime(0,0)
deadline new RelativeTime(Long.MAX_VALUE, 999999)
overrunHandler None
missHandler None
rousable false
Arrival time queue size | 0
Queue overflow policy | SAVE

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

RTSJ 2.0 (Final Draft) 119

6 Scheduling AperiodicParameters

6.3.3.2.1 Constructors

AperiodicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler, boolean)
Signature
public
AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

Creates an AperiodicParameters object.

Since RTSJ 2.0
Parameters
cost—Processing time per invocation. On implementations which can measure the

amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable receives. On implementations which cannot
measure execution time, it is not possible to determine when any particu-
lar object exceeds cost. When null, the default value is a new instance of
RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value
is a new instance of RelativeTime (Long.MAX_VALUE, 999999).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

rousable—determines whether or not an instance of Schedulable can be prema-
turely released by a thread interrupt.
Throws
StaticIllegalArgumentException—when the time value of cost is less than zero,
or the time value of deadline is less than or equal to zero.

IllegalAssignmentError—when cost, deadline, overrunHandler or missHan-
dler cannot be stored in this.

AperiodicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler)

Signature

120 RTSJ 2.0 (Final Draft)

AperiodicParameters javazx.realtime 6.3

public

AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (cost,
deadline, overrunHandler, missHandler, false).

Parameters
cost—Processing time per invocation. On implementations that support cost
enforcement, this value is the maximum amount of time a schedulable receives.
On implementations which do not support cost enforcement, it is not possible
to determine when any particular object exceeds cost. When null, the default
value is a new instance of RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value
is a new instance of RelativeTime (Long.MAX_VALUE, 999999).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.
Throws
StaticIllegalArgumentException—when the time value of cost is less than zero,
or the time value of deadline is less than or equal to zero.

IllegalAssignmentError—when cost, deadline, overrunHandler or missHan-
dler cannot be stored in this.

AperiodicParameters(RelativeTime, AsyncEventHandler,
boolean)
Signature
public
AperiodicParameters(RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-—
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
deadline, null, missHandler, rousable).

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 121

6 Scheduling BackgroundParameters

AperiodicParameters(RelativeTime)
Signature

public

AperiodicParameters(RelativeTime deadline)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-—
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
deadline, null, null, false).

Since RTSJ 2.0

AperiodicParameters
Signature
public
AperiodicParameters()

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-—
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
null, null, null, false).

Since RTSJ 1.0.1

6.3.3.3 BackgroundParameters

public class BackgroundParameters

Inheritance

java.lang.Object
ReleaseParameters<BackgroundParameters>
BackgroundParameters

Description

Parameters for realtime threads that are only released once. A thread using
this release parameters may not use RealtimeThread.waitForNextRelease ()
or have its RealtimeThread.release() methods called. Calling these methods
results in an I1legalThreadStateException. Event handlers may not use this
type of ReleaseParameters.

Since RTSJ 2.0

6.3.3.3.1 Constructors

122 RTSJ 2.0 (Final Draft)

BackgroundParameters javazx.realtime 6.3

BackgroundParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler)
Signature
public
BackgroundParameters (RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
A constructor for both cost and deadline monitoring.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.
Parameters

cost—The maximum cost for executing the run method

deadline—The deadline for the completion of the run method

overrunHandler—The handler to call on cost overrun.

missHandler—The handler to call on deadline miss.

Throws

StaticIllegalArgumentException—when the time value of cost is less than zero,
or the time value of deadline is less than or equal to zero, or the chronograph
associated with the cost or deadline parameters is not an instance of Clock.

IllegalAssignmentError—when cost, deadline, overrunHandler, or missHandler
cannot be stored in this.

BackgroundParameters(RelativeTime, AsyncEventHandler)

Signature
public
BackgroundParameters(RelativeTime deadline,
AsyncEventHandler missHandler)

Description

A constructor for deadline monitoring. Equivalent to BackgroundParameters(null,
deadline, null, missHandler)

BackgroundParameters
Signature
public
BackgroundParameters ()

Description

A constructor for not having any restrictions on, or monitoring of, scheduling.
Equivalent to BackgroundParameters(null, null, null, null, false)

RTSJ 2.0 (Final Draft) 123

6 Scheduling FirstInFirstOutParameters

6.3.3.4 FirstInFirstOutParameters

public class FirstInFirstOutParameters

Inheritance

java.lang.Object
SchedulingParameters
PriorityParameters
FirstInFirstOutParameters

Description

Same as PriorityParameters except that it is only valid with the FirstIn-
FirstOutScheduler.

Since RTSJ 2.0

6.3.3.4.1 Constructors

FirstInFirstOutParameters(int, Affinity)
Signature
public
FirstInFirstOutParameters(int priority,
Affinity affinity)

Description

Create scheduling parameters restricted to the FIFO scheduler.

Parameters
priority—The priority assigned to schedulables that use this parameter instance.

affinity—The affinity assigned to schedulables that use this parameter instance.

FirstInFirstOutParameters(int)
Signature

public

FirstInFirstOutParameters(int priority)

Description
Create scheduling parameters restricted to the FIFO scheduler.
Parameters

priority—The priority assigned to schedulables that use this parameter instance.

6.3.3.4.2 Methods

124 RTSJ 2.0 (Final Draft)

FirstInFirstOutScheduler javax.realtime 6.3

isCompatible(Scheduler)

Signature
public boolean
isCompatible(Scheduler scheduler)

Description

Parameters
scheduler—The scheduler to check against
Returns
true when and only when this can be used with scheduler as the scheduler.

Since RTSJ 2.0

subsumes(SchedulingParameters)
Signature

public boolean

subsumes (SchedulingParameters other)

Description

Parameters
other—The other parameters object to be compared with.
Returns
true when and only when this parameters is more eligible than the other parameters.

6.3.3.5 FirstInFirstOutScheduler

public class FirstInFirstOutScheduler

Inheritance

java.lang.Object
Scheduler
PriorityScheduler
FirstInFirstOutScheduler

Description

A version of PriorityScheduler where once a thread is scheduled at a given
priority, it runs until it is blocked or is preempted by a higher priority thread.
When preempted, it remains the next thread ready for its priority. This is the
default scheduler for realtime tasks. It represents the required (by the RTSJ)
priority-based scheduler. The default instance is the base scheduler which does
fixed priority, preemptive scheduling.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

RTSJ 2.0 (Final Draft) 125

6 Scheduling FirstInFirstOutScheduler

Table 6.5: FirstInFirstOut Default PriorityParameter Values

Attribute Default Value
Priority norm priority

The system contains one instance of the FirstInFirstOutScheduler which
is the system’s base scheduler and is returned by FirstInFirstOutScheduler.
instance(). The instance returned by the instance() method is the base
scheduler and is returned by Scheduler.getDefaultScheduler () unless the
default scheduler is reset with Scheduler.setDefaultScheduler(Scheduler).

Since RTSJ 2.0

6.3.3.5.1 Methods

instance

Signature
public static javax.realtime.FirstInFirstOutScheduler
instance ()

Description

Obtains a reference to the distinguished instance of PriorityScheduler which
is the system’s base scheduler.

Returns
a reference to the distinguished instance PriorityScheduler.

getMaxPriority
Signature
public int
getMaxPriority()

Description

Obtains the maximum priority available for a schedulable managed by this
scheduler.

Returns
the value of the maximum priority.

126 RTSJ 2.0 (Final Draft)

FirstInFirstOutScheduler javax.realtime 6.3

getMinPriority
Signature
public int
getMinPriority()

Description

Obtains the minimum priority available for a schedulable managed by this
scheduler.

Returns
the minimum priority used by this scheduler.

getNormPriority
Signature
public int
getNormPriority ()

Description

Obtains the normal priority available for a schedulable managed by this scheduler.

Returns
the value of the normal priority.

getPolicyName

Signature
public java.lang.String
getPolicyName ()

Description

Obtains the policy name of this.

Returns
the policy name (Fixed Priority First In First Out) as a string.

reschedule(Thread, SchedulingParameters)
Signature
public void
reschedule(Thread thread,
SchedulingParameters eligibility)

Description

Parameters
thread—The thread to promote to realtime scheduling.

RTSJ 2.0 (Final Draft) 127

6 Scheduling PeriodicParameters

eligibility—A SchedulingParameters instance such as PriorityParameters

for a PriorityScheduler.

Throws
StaticIllegalArgumentException—when eligibility is not valid for the sched-

uler.

StaticIllegalStateException—when eligibility specifies parameters that are

out of range for the scheduler or the threads state or the intersection of affinity
in scheduling and the affinity of realtime thread group associated with thread
is empty.

StaticUnsupportedOperationException—when thread a normal Java thread

and the scheduler does not support promoting normal java threads.

Since RTSJ 2.0

6.3

.3.6 PeriodicParameters

public class PeriodicParameters

Inh

eritance

java.lang.Object

ReleaseParameters<PeriodicParameters>
PeriodicParameters

Description

128

This release parameter indicates that the schedulable is released on a regular
basis. For an AsyncEventHandler, this means the handler is either released by a
periodic timer or the associated event occurs periodically. For a RealtimeThread,
this means the RealtimeThread.waitForNextRelease method will unblock the
associated realtime thread at the start of each period.

When a reference to a PeriodicParameters object is given as a parameter to
a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the PeriodicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the PeriodicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the PeriodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

Only a change to a PeriodicParameters object caused by methods on that
object cause the change to be propagate to all instances of Schedulable using
that parameter object. For instance, calling setCost on a PeriodicParameters
object will make the change, then notify the scheduler that the parameter object
has changed. At that point the object is reconsidered for every SO that uses
it. Invoking a method on a RelativeTime object that is the cost for this object
changes the cost value but does not pass the change to the scheduler at that time.
That change must not change the behavior of the SOs that use the parameter
object until a setter method on the PeriodicParameters object is invoked,

RTSJ 2.0 (Final Draft)

PeriodicParameters javazx.realtime 6.3

the parameter object is used in setReleaseParameters(), or it is used in a
constructor for an SO.

Periodic parameters use HighResolutionTime values for period and start
time. Since these times are expressed as a HighResolutionTime values, these
values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost ()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated PeriodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.7: PeriodicParameter Default Values

Attribute Default Value

start new RelativeTime(0,0)

period No default. A value must be sup-
plied

cost new RelativeTime(0,0)

deadline new RelativeTime(period)

overrunHandler None

missHandler None

EventQueueOverflowPolicy QueueOverflowPolicy. DISABLE

Periodic release parameters are strictly informational when they are applied
to async event handlers. They must be used for any feasibility analysis, but
release of the async event handler is not entirely controlled by the scheduler.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.6.1 Constructors

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEvent-
Handler, boolean)

Signature

RTSJ 2.0 (Final Draft) 129

6 Scheduling PeriodicParameters

public

PeriodicParameters(HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

Creates a PeriodicParameters object with attributes set to the specified values.

Since RTSJ 2.0
Parameters
start—Time at which the first release begins (i.e. the realtime thread becomes

eligible for execution.) When a RelativeTime, this time is relative to the first
time the thread becomes activated (that is, when start () is called). When an
AbsoluteTime, then the first release is the maximum of the start parameter
and the time of the call to the associated RealtimeThread.start() method
(modified according to any phasing policy). When null, the default value is a
new instance of RelativeTime(0,0).

period—The period is the interval between successive releases. There is no default
value. When period is null an exception is thrown.

cost—Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime (0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value is
new instance of RelativeTime (period).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost in the given release. Implementations may ignore this parameter.
When null, the default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
is still executing after the deadline has passed. When null, the default value is
no deadline miss handler.

rousable—When true, an interrupt will cause an early release, otherwise not.
Throws
StaticIllegalArgumentException—when the period is null or its time value
is not greater than zero, or when the time value of cost is less than zero,
or when the time value of deadline is not greater than zero, or when the
clock associated with the cost is not the realtime clock, or when the clocks
associated with the deadline and period parameters are not the same.

IllegalAssignmentError—when start period, cost, deadline, overrunHan-
dler or missHandler cannot be stored in this.

130 RTSJ 2.0 (Final Draft)

PeriodicParameters javazx.realtime 6.3

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEvent-
Handler)
Signature
public
PeriodicParameters(HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHand-
ler, boolean) with the argument list (start, period, cost, deadline,
overrunHandler, missHandler, false);

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, AsyncEventHandler, boolean)
Signature
public
PeriodicParameters(HighResolutionTime<?> start,
RelativeTime period,
RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler,
boolean) with the argument list (start, period, deadline, null, null,
missHandler, rousable);

Since RTSJ 2.0

PeriodicParameters(HighResolutionTime, RelativeTime)
Signature
public
PeriodicParameters(HighResolutionTime<?7> start,
RelativeTime period)

Description

Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler,

RTSJ 2.0 (Final Draft) 131

6 Scheduling PeriodicParameters

boolean) with the argument list (start, period, null, null, null, null,
false);

Since RTSJ 1.0.1

PeriodicParameters(RelativeTime)
Signature

public

PeriodicParameters(RelativeTime period)

Description

Creates a PeriodicParameters object with the specified period and all other
attributes set to their default values. This constructor has the same effect
as invoking PeriodicParameters(null, period, null, null, null, null,
false)

Since RTSJ 1.0.1

6.3.3.6.2 Methods

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description

Determines the current value of period.

Returns
the object last used to set the period containing the current value of period.

getPeriod(RelativeTime)

Signature
public javax.realtime.RelativeTime
getPeriod(RelativeTime value)

Description

Determines the current value of period.

Returns
value or, when null, the last object used to set the period, set to the current value
of period.

Since RTSJ 2.0

132 RTSJ 2.0 (Final Draft)

PeriodicParameters javazx.realtime 6.3

getStart

Signature
public javax.realtime.HighResolutionTime<?7>
getStart ()

Description

Determines the time used to start an instance of Schedulable, which is not
necessarily the time at which it actually started.

Returns
the object last used to set the start containing the current value of start.

setPeriod(RelativeTime)

Signature
public javax.realtime.PeriodicParameters
setPeriod(RelativeTime period)

Description
Sets the period.

Parameters
period—The value to which period is set.
Throws

StaticIllegalArgumentException—when the given period is null or its time
value is not greater than zero. Also when period is incompatible with the
scheduler for any associated schedulable or when an associated AsyncBaseEv-
entHandler is associated with a Timer whose period does not match period.

IllegalAssignmentError—when period cannot be stored in this.

Returns
this

Since RTSJ 2.0 returns itself

setStart(HighResolutionTime)

Signature
public javax.realtime.PeriodicParameters
setStart (HighResolutionTime<?> start)

Description

Sets the start time.

Changes to the start time in a realtime thread’s PeriodicParameters object
only have an effect on its initial release time.

Note that an instance of PeriodicParameters may be shared by several
schedulables. A change to the start time may take effect on a subset of these
schedulables. That leaves the start time returned by getStart unreliable as a
way to determine the start time of a schedulable.

RTSJ 2.0 (Final Draft) 133

6 Scheduling PriorityParameters

Parameters
start—The new start time. When null, the default value is a new instance of
RelativeTime(0,0).
Throws
StaticIllegalArgumentException—when the given start time is incompatible
with the scheduler for any of the schedulable objects which are presently using
this parameter object.

IllegalAssignmentError—when start cannot be stored in this.

Returns
this

Since RTSJ 2.0 returns itself

6.3.3.7 PriorityParameters

public class PriorityParameters

Inheritance

java.lang.Object
SchedulingParameters
PriorityParameters

Description

Instances of this class should be assigned to schedulables that are managed by
schedulers which use a single integer to determine execution order. The base
scheduler required by this specification and represented by the class Priori-
tyScheduler is such a scheduler.

6.3.3.7.1 Constructors

PriorityParameters(int, Affinity)
Signature
public
PriorityParameters(int priority,
Affinity affinity)

Description

Creates an instance of PriorityParameters with the given features.

Since RTSJ 2.0
Parameters
priority—The priority assigned to schedulables that use this parameter instance.

affinity—The affinity assigned to schedulables that use this parameter instance.

134 RTSJ 2.0 (Final Draft)

PriorityParameters javazx.realtime 6.3

PriorityParameters(int)
Signature
public
PriorityParameters(int priority)

Description

Creates an instance of PriorityParameters with the default affinity.

Parameters
priority—The priority assigned to schedulables that use this parameter instance.

6.3.3.7.2 Methods

getPriority
Signature
public int
getPriority()

Description
Gets the priority value.

Returns
the priority.

isCompatible(Scheduler)

Signature
public boolean
isCompatible(Scheduler scheduler)

Description

Parameters
scheduler—The scheduler to check against
Returns
true when and only when this can be used with scheduler as the scheduler.

Since RTSJ 2.0

subsumes(SchedulingParameters)
Signature

public boolean

subsumes (SchedulingParameters other)

Description

RTSJ 2.0 (Final Draft) 135

6 Scheduling PriorityScheduler

Parameters
other—The other parameters object to be compared with.
Returns
true when and only when this parameters is more eligible than the other parameters.

toString

Signature
public java.lang.String
toString()

Description

Converts the priority value to a string.

Returns
a string representing the value of priority.

6.3.3.8 PriorityScheduler

public abstract class PriorityScheduler

Inheritance

java.lang.Object
Scheduler
PriorityScheduler

Description

Class which represents the required (by the RT'SJ) priority-based schedulers. The
default instance is the base scheduler which uses a fixed priority, first-in-first-out,
preemptive scheduling algorithm.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

Table 6.9: PriorityScheduler Default PriorityParameter Values

Attribute Default Value
Priority norm priority

Note that the system contains by default one instance of Priori-
tyScheduler, which is the system’s base scheduler and is returned by
FirstInFirstOutScheduler.instance(), so a subclass of PriorityScheduler.

136 RTSJ 2.0 (Final Draft)

PriorityScheduler javazx.realtime 6.3

It may, however, contain other instances of subclasses of PriorityScheduler
created through this class’ protected constructor. The instance returned by the
FirstInFirstOutScheduler.instance() method, the base scheduler, is also
returned by Scheduler.getDefaultScheduler () unless the default scheduler is
changed with Scheduler.setDefaultScheduler (Scheduler).

Since RTSJ 2.0 PriorityScheduler is abstract.

6.3.3.8.1 Constructors

PriorityScheduler
Signature
protected
PriorityScheduler ()

Description

Constructs an instance of PriorityScheduler. Applications will likely not need
any instance other than the default instance.

6.3.3.8.2 Methods

getPolicyName

Signature
public java.lang.String
getPolicyName ()

Description
Gets the policy name of this.

Returns
the policy name (Fixed Priority) as a string.

getMaxPriority
Signature
public int
getMaxPriority()

Description
Gets the maximum priority available for a schedulable managed by this scheduler.

Returns
the value of the maximum priority.

RTSJ 2.0 (Final Draft) 137

6 Scheduling PriorityScheduler

getMinPriority
Signature
public int
getMinPriority()

Description

Gets the minimum priority available for a schedulable managed by this scheduler.

Returns
the minimum priority used by this scheduler.

getNormPriority
Signature
public int
getNormPriority ()

Description

Gets the normal priority available for a schedulable managed by this scheduler.

Returns
the value of the normal priority.

createDefaultSchedulingParameters
Signature
protected javax.realtime.SchedulingParameters
createDefaultSchedulingParameters ()

Description

Throws
IllegalTaskStateException—when the current task is using a scheduler that
does not support null scheduling parameters.

Returns
parameters that are suitable for this scheduler in the current context.

Since RTSJ 2.0

reschedule(Thread, SchedulingParameters)
Signature
public void
reschedule(Thread thread,
SchedulingParameters eligibility)

Description

138 RTSJ 2.0 (Final Draft)

RealtimeThreadGroup javazx.realtime 6.3

Parameters
thread—The thread to promote to realtime scheduling.

eligibility—A SchedulingParameters instance such as PriorityParameters
for a PriorityScheduler.
Throws
StaticIllegalArgumentException—when eligibility is not valid for the sched-
uler.

StaticIllegalStateException—when eligibility specifies parameters that are
out of range for the scheduler or the threads state or the intersection of affinity
in scheduling and the affinity of realtime thread group associated with thread
is empty.

StaticUnsupportedOperationException—when thread a normal Java thread
and the scheduler does not support promoting normal java threads.

Since RTSJ 2.0

6.3.3.9 RealtimeThreadGroup

public class RealtimeThread Group

Inheritance

java.lang.Object
java.lang. Thread Group
RealtimeThread Group

Description

An enhanced ThreadGroup in which a RealtimeThread instance may be started,
as well as a convention Thread. Limits for what realtime scheduler and scheduling
parameters can be enforced on all tasks in this group. A normal ThreadGroup
may not contain an instance of Schedulable or instances of RealtimeThread-
Group. Every thread is in some instance of ThreadGroup and every instance of
RealtimeThread is in some instance of RealtimeThreadGroup. This means that
the main thread of a realtime Java implementation must be in an instance of this
class, not a normal ThreadGroup.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level. Since
RTSJ 2.0

6.3.3.9.1 Constructors

RealtimeThreadGroup(RealtimeThreadGroup, String, Class)
Signature

RTSJ 2.0 (Final Draft) 139

6 Scheduling RealtimeThread Group

public
RealtimeThreadGroup(RealtimeThreadGroup parent,
String name,
java.lang.Class<? extends Scheduler> scheduler)

Description

Creates a new realtime thread group with its scheduler type inherited from
parent.

Parameters
parent—The parent group of the new group
name—The name of the new group
scheduler—a scheduler class limiting the schedulers allowed for scheduling
group members. When null inherits from parent. Instances of java.lang.
ThreadGroup do not have a scheduler and may not contain instances of Real-
timeSchedulerGroup.
Throws
StaticIllegalStateException—when the parent ThreadGroup instance is not
an instance of RealtimeThreadGroup.
IllegalAssignmentError—when the parent ThreadGroup instance is not
assignable to this.

RealtimeThreadGroup(RealtimeThreadGroup, String)
Signature
public
RealtimeThreadGroup(RealtimeThreadGroup parent,
String name)

Description
Creates a new realtime thread group with its scheduler type inherited from
parent.

Parameters
parent—The parent group of the new group
name—The name of the new group
Throws
StaticIllegalStateException—when the parent ThreadGroup instance is not
an instance of RealtimeThreadGroup.
IllegalAssignmentError—when the parent ThreadGroup instance is not
assignable to this.

RealtimeThreadGroup(String)
Signature
public
RealtimeThreadGroup(String name)

140 RTSJ 2.0 (Final Draft)

RealtimeThreadGroup javazx.realtime 6.3

throws StaticIllegalStateException,
IllegalAssignmentError

Description

Creates a new group with the current ThreadGroup instance as its parent and
that parent’s scheduler type for its scheduler type. That parent must be an
instance of RealtimeThreadGroup. The primordial realtime thread group has
Scheduler.class as its scheduler type.

Parameters
name—The name of the new group
Throws
StaticIllegalStateException—when the parent ThreadGroup instance is not
an instance of RealtimeThreadGroup.

IllegalAssignmentError—when the parent ThreadGroup instance is not
assignable to this.

6.3.3.9.2 Methods

getScheduler

Signature
public java.lang.Class<? extends javax.realtime.Scheduler>
getScheduler ()

Description

Finds the type of scheduler tasks in this group may use. The scheduler
of each thread must be an instance of the type returned. The default is
class<Scheduler>, but it may be set to any subtype.

Returns
the scheduler type

getMaxEligibility

Signature
public javax.realtime.SchedulingParameters
getMaxEligibility ()

Description

Finds the upper bound on scheduling eligibility that tasks in this group may
have. For example, when it is an instance of PriorityParameters, it gives the
maximum base priority any task in this group.

Returns

RTSJ 2.0 (Final Draft) 141

6 Scheduling RealtimeThread Group

the scheduling parameter instance denoting the upper bound on the scheduling

eligibility of threads in this group, The maximal possible eligibility is represented
by an instance of SchedulingParamters, not one of its subclasses, with an
affinity that contains all processors available to the process. This may not be
null.

setMaxEligibility (SchedulingParameters)

Signature

public javax.realtime.RealtimeThreadGroup
setMaxEligibility(SchedulingParameters parameters)
throws StaticIllegalStateException

Description

Sets the upper bound on scheduling eligibility that tasks in this group may
have. For example, when it is an instance of PriorityParameters, it sets the
maximum base priority any task in this group may have. When a task in the
group has a higher eligibility than specified in parameters, the task’s eligibility
is silently set to the max specified in parameters.

When the new eligibility is higher than that of any parent’s eligibility, then
eligibility is set to the minimum of those priorities. When a child of this Real-
timeThreadGroup has a higher max eligibility than specified in parameters, its
max eligibility is silently set to the max specified in parameters as if setMaxEl-
igibility were invoked on it recursively.

When a task in this RealtimeThreadGroup or a child of this RealtimeThread-
Group has previously had its maximum eligibility reduced by a call to this method,
setting a higher maximum eligibility via this method will not automatically reraise
its eligibility. Please note that this method is not thread safe, as it uses methods
from ThreadGroup that are not thread safe.

Parameters

parameters—The SchedulingParameter instance denoting the new upper bound

on the scheduling eligibility of threads in this group.

Throws

StaticIllegalArgumentException—when parameters are not consistent with

the scheduler type. The scheduler specified must be specific enough that
only mutually compatible SchedulingParameters could be set. For example,
Scheduler is not sufficient to restrict the scheduling parameters to compatible
types, but PriorityScheduler does since all PriorityScheduler instances
require PriorityParameters.

StaticIllegalStateException—when parameters is a higher eligibility than

the max eligibility enforced by a SchedulingParameters above this in the
hierarchy.

Returns
this

142

RTSJ 2.0 (Final Draft)

RealtimeThreadGroup javazx.realtime 6.3

visitThreads(Consumer, boolean)
Signature
public void
visitThreads(java.util.function.Consumer<java.lang.Thread> visitor,
boolean recurse)
throws ForEachTerminationException

Description

Visit all java.lang.Thread instances contained by this group and optionally
all ThreadGroup instances contained within recursively.

Parameters
visitor—A consumer of each schedulable instance.

recurse—A boolean to indicated that the visit should be recursive.
Throws
ForEachTerminationException—

visitThreads(Consumer)

Signature
public void
visitThreads(java.util.function.Consumer<java.lang.Thread> visitor)
throws ForEachTerminationException

Description

Visit all java.lang.Thread instances contained by this group. It is equivalent
to calling visitThreads (Consumer, boolean) with recurse set to false.

Parameters
visitor—A consumer of each thread instance
Throws
ForEachTerminationException—when the visitor is prematurely ended.

visitThread Groups(Consumer)

Signature
public void
visitThreadGroups(java.util.function.Consumer<java.lang.ThreadGroup> visitor)
throws ForEachTerminationException

Description

Performs some operation on all the groups in the current group. The traversal
of these children continues as long as visitor does not throw a ForEachTer-
minationException. Thus the traversal can be prematurely ended by visitor
throwing this exception, e.g., when a particular element is found. It is equiva-
lent to a call to visitThreadGroups (Consumer, boolean) with recurse set to
false.

RTSJ 2.0 (Final Draft) 143

6 Scheduling ReleaseParameters

Parameters

visitor—The function to be called on each child thread group.
Throws

ForEachTerminationException—when the traversal ends prematurely.

visitThread Groups(Consumer, boolean)
Signature
public void
visitThreadGroups(java.util.function.Consumer<java.lang.ThreadGroup> visitor,
boolean recursive)

Description

Performs some operation on all th groups in the current group. The traversal
of these children continues as long as visitor does not throw a ForEachTer-
minationException. Thus the traversal can be prematurely ended by visitor
throwing this exception, e.g., when a particular element is found.

Parameters
visitor—The function to be called on each child thread group.
recursive—A boolean to determine whether or not all subgroups are included,
where true means yes and false means no.
Throws
ForEachTerminationException—when the traversal ends prematurely.

6.3.3.10 ReleaseParameters

public abstract class ReleaseParameters<T extends ReleaseParameters<T>>

Inheritance

java.lang.Object
ReleaseParameters<T extends ReleaseParameters<T>>

Interfaces
Cloneable
Serializable

Description

The top-level class for release characteristics used by Schedulable. When a
reference to a ReleaseParameters object is given as a parameter to a constructor
of a schedulable, the ReleaseParameters object becomes bound to the object
being created. Changes to the values in the ReleaseParameters object affect the
constructed object. When given to more than one constructor, then changes to
the values in the ReleaseParameters object affect all of the associated objects.
Note that this is a one-to-many relationship and not a many-to-many.

Only changes to an ReleaseParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For

144 RTSJ 2.0 (Final Draft)

ReleaseParameters javazx.realtime 6.3

instance, invoking setDeadline on a ReleaseParameters instance will make the
change, and then notify the scheduler that the object has been changed. At that
point the object is reconsidered for every SO that uses it. Invoking a method on
the RelativeTime object that is the deadline for this object may change the time
value but it does not pass the new time value to the scheduler at that time. Even
though the changed time value is referenced by ReleaseParameters objects, it
will not change the behavior of the SOs that use the parameter object until a
setter method on the ReleaseParameters object is invoked, the parameter object
is used in setReleaseParameters(), or the object is used in a constructor for a
schedulable.

Release parameters use HighResolutionTime values for cost, and deadline.
Since the times are expressed as HighResolutionTime values, these values use
accurate timers with nanosecond granularity. The actual precision available and
even the quantity the timers measure depend on the clock associated with each
time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as
when it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost ()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated ReleaseParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.11: ReleaseParameter Default Values

Attribute Default Value
cost new RelativeTime(0,0)
deadline no default
overrunHandler None
missHandler None
rousable false
initial event queue length 0

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.10.1 Fields

RTSJ 2.0 (Final Draft) 145

6 Scheduling ReleaseParameters

DISABLE__MONITORING
public static final RelativeTime DISABLE_MONITORING

Description

A special value for cost for turning off cost monitoring. This is just a notification
to the VM that the application does not require cost monitoring for a give instance
of Schedulable. What the VM does with it is system dependent; though, when
a cost is so set, the application cannot rely on any cost tracking that involves
said instance.

6.3.3.10.2 Constructors

ReleaseParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler, boolean)
Signature
protected
ReleaseParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

Creates a new instance of ReleaseParameters with the given parameter values.

Parameters
cost—Processing time units per release. On implementations which can measure
the amount of time an instance of schedulable is executed, when null, the
default value is a new instance of RelativeTime (0, 0) meaning that no cost
enforcement will take place. Setting it to DISABLE_MONITORING disables cost
monitoring as well.

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. There is no default for deadline
in this class. The default must be determined by the subclasses.

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. In the minimum implementation overrunHandler is ignored.
When null, no application event handler is executed on cost overrun.

missHandler—This handler is invoked when the run() method of the schedulable is
still executing after the deadline has passed. When null, no application event
handler is executed on the miss deadline condition.

rousable—When true, an interrupt will cause this schedulable fire immediately.

Throws

146 RTSJ 2.0 (Final Draft)

ReleaseParameters javazx.realtime 6.3

StaticIllegalArgumentException—when the time value of cost is less than zero,
or the time value of deadline is less than or equal to zero, or the chronograph
associated with the cost or deadline parameters is not an instance of Clock.

IllegalAssignmentError—when cost, deadline, overrunHandler, or missHandler
cannot be stored in this. Since RTSJ 2.0

ReleaseParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler)
Signature
protected
ReleaseParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

Creates a new instance of ReleaseParameters with the given parameter values.

Parameters
cost—Processing time units per release. On implementations which can measure
the amount of time an instance of schedulable is executed, when null, the
default value is a new instance of RelativeTime (0, 0) meaning that no cost
enforcement will take place. Setting it to DISABLE_MONITORING disables cost
monitoring as well.

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. There is no default for deadline
in this class. The default must be determined by the subclasses.

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. In the minimum implementation overrunHandler is ignored.
When null, no application event handler is executed on cost overrun.

missHandler—This handler is invoked when the run() method of the schedulable is
still executing after the deadline has passed. When null, no application event
handler is executed on the miss deadline condition.
Throws
StaticIllegalArgumentException—when the time value of cost is less than zero,
or the time value of deadline is less than or equal to zero, or the chronograph
associated with the cost or deadline parameters is not an instance of Clock.

IllegalAssignmentError—when cost, deadline, overrunHandler, or missHandler
cannot be stored in this.

ReleaseParameters
Signature
protected
ReleaseParameters()

RTSJ 2.0 (Final Draft) 147

6 Scheduling ReleaseParameters

Description

Equivalent to ReleaseParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler) with the argument list (null, null, null,
null).

6.3.3.10.3 Methods

clone

Signature
public java.lang.Object
clone()

Description

Obtains a clone of this. This method should behave effectively as when it
constructed a new object with clones of the high-resolution time values of this.
e The new object is in the current allocation context.
» clone does not copy any associations from this and it does not implicitly
bind the new object to a SO.
o The new object has clones of all high-resolution time values (deep copy).
» References to event handlers are copied (shallow copy.)

Since RTSJ 1.0.1

getCost

Signature
public javax.realtime.RelativeTime
getCost ()

Description

Determines the current value of cost. A value of RelativeTime (0,0 meaning
that no cost enforcement will take place; whereas a value of DISABLE_MONITORING
means cost monitoring is disabled.

Returns
the object last used to set the cost containing the current value of cost.

getCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getCost (RelativeTime value)

Description

148 RTSJ 2.0 (Final Draft)

ReleaseParameters javazx.realtime 6.3

Determines the current value of cost, where Relative(0,0) means no cost
enforcement in being done and DISABLE MONITORING means cost monitoring is

disabled as well.

Parameters
value—The parameter in which to return the cost.
Returns
value or, when null, the last object used to set the cost, set to the current value
of cost.

Since RTSJ 2.0

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler ()

Description
Gets a reference to the cost overrun handler.

Returns
a reference to the associated cost overrun handler.

getDeadline

Signature
public javax.realtime.RelativeTime
getDeadline ()

Description
Determines the current value of deadline.

Returns
the object last used to set the deadline containing the current value of deadline.

getDeadline(RelativeTime)
Signature
public javax.realtime.RelativeTime
getDeadline(RelativeTime value)

Description
Determines the current value of deadline.

Parameters
value—The parameter in which to return the deadline.
Returns
value or, when null, the last object used to set the deadline, set to the current
value of deadline.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 149

6 Scheduling ReleaseParameters

getDeadlineMissHandler

Signature
public javax.realtime.AsyncEventHandler
getDeadlineMissHandler ()

Description

Gets a reference to the deadline miss handler.

Returns
a reference to the deadline miss handler.

setCost(RelativeTime)

Signature
public T extends javax.realtime.ReleaseParameters<T>
setCost(RelativeTime cost)

Description

Sets the cost value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)) the cost of
those schedulables takes effect immmediately.

Parameters
cost—Processing time units per release. On implementations which can measure
the amount of time a schedulable is executed, this value is the maximum
amount of time a schedulable receives per release. On implementations which
cannot measure execution time, it is not possible to determine when any
particular object exceeds cost. When null, the default value is a new instance
of RelativeTime(0,0).
Throws
StaticIllegalArgumentException—when the time value of cost is less than zero,
or the clock associated with the cost parameters is not the realtime clock.

IllegalAssignmentError—when cost cannot be stored in this.

Returns
this

Since RTSJ 2.0 returns itself

setCostOverrunHandler(AsyncEventHandler)
Signature
public T extends javax.realtime.ReleaseParameters<T>
setCostOverrunHandler (AsyncEventHandler handler)
throws IllegalAssignmentError

Description

150 RTSJ 2.0 (Final Draft)

ReleaseParameters javazx.realtime 6.3

Sets the cost overrun handler.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)) the cost over-
run handler of those schedulables is effective immediately.

Parameters
handler—This handler is invoked when an invocation of the schedulable attempts
to exceed cost time units in a release. A null value of handler signifies that
no cost overrun handler should be used.
Throws
IllegalAssignmentError—when handler cannot be stored in this.

Returns
this

Since RTSJ 2.0 returns itself

setDeadline(RelativeTime)

Signature
public T extends javax.realtime.ReleaseParameters<T>
setDeadline(RelativeTime deadline)

Description

Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)) the deadline
of those schedulables take effect at completion.

Parameters
deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. The default value of the
deadline must be controlled by the classes that extend ReleaseParameters.
Throws
StaticIllegalArgumentException—when deadline is null, the time value of
deadline is less than or equal to zero, or when the new value of this deadline
is incompatible with the scheduler for any associated schedulable.

IllegalAssignmentError—when deadline cannot be stored in this.

Returns
this

Since RTSJ 2.0 returns itself

setDeadlineMissHandler(AsyncEventHandler)

Signature

RTSJ 2.0 (Final Draft) 151

6 Scheduling ReleaseParameters

public T extends javax.realtime.ReleaseParameters<T>
setDeadlineMissHandler (AsyncEventHandler handler)

Description

Sets the deadline miss handler.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)) the deadline
miss handler of those schedulables take effect at completion.

Parameters
handler—This handler is invoked when any release of the schedulable fails to
complete before the deadline passes. A null value of handler signifies that
no deadline miss handler should be used.
Throws
IllegalAssignmentError—when handler cannot be stored in this.

Returns
this

Since RTSJ 2.0 returns itself

isRousable
Signature
public boolean
isRousable()

Description

Determines whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class to be prematurely released, i.e., released
before the very first release event happens. It has no effect for periodic realtime
threads, since the first event of a timing is when start is called. The default value,
i.e., before any call to setRousable(boolean), is false.

Note that the rousable state has no effect on instances of RealtimeThread
which have an instance of BackgroundParameters for ReleaseParameters or
on ordinary event handlers, i.e., those which do not extend ActiveEvent. In the
former case, there are no releases to interrupt and, in the case, the handler does
not have a ActiveEventDispatcher to release it.

Returns
true when rousable and false when not.

Since RTSJ 2.0

setRousable(boolean)

Signature
public T extends javax.realtime.ReleaseParameters<T>
setRousable(boolean value)

152 RTSJ 2.0 (Final Draft)

ReleaseParameters javazx.realtime 6.3

Description

Dictates whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class to be prematurely released, i.e., released
before the very first release event happens.

Parameters

value—When rousable, true and false when not.
Returns

this

Since RTSJ 2.0

getEventQueueOverflowPolicy

Signature
public javax.realtime.QueueOverflowPolicy
getEventQueueOverflowPolicy ()

Description

Gets the behavior of the arrival time queue in the event of an overflow.

Returns
the behavior of the arrival time queue.

Since RTSJ 2.0

setEventQueueOverflowPolicy (QueueOverflowPolicy)
Signature
public T extends javax.realtime.ReleaseParameters<T>
setEventQueueOverflowPolicy(QueueOverflowPolicy policy)

Description

Sets the policy for the arrival time queue for when the insertion of a new element
would make the queue size greater than the initial size given in this.

Parameters

policy—A queue overflow policy to use for handlers associated with this.
Returns

this

Since RTSJ 2.0
getInitialQueueLength
Signature

public int
getInitialQueuelLength()

Description

RTSJ 2.0 (Final Draft) 153

6 Scheduling Scheduler

Gets the initial number of elements the event queue can hold. This returns the
initial queue length currently associated with this parameter object. When the
overflow policy is SAVE the initial queue length may not be related to the current
queue lengths of schedulables associated with this parameter object.

Returns
the initial length of the queue.

Since RTSJ 2.0 replaces the subclasse method AperiodicParameters.
getInitialArrivalTimeQueueLength().

setInitialQueueLength (int)

Signature
public T extends javax.realtime.ReleaseParameters<T>
setInitialQueuelength(int initial)

Description
Sets the initial number of elements the arrival time queue can hold without
lengthening the queue. The initial length of an arrival queue is set when the
schedulable using the queue is constructed, after that time changes in the initial
queue length are ignored. The queue may have a length of zero, i.e., any event,
along with its arrival time, received during a previous release is lost.

Parameters
initial—The initial length of the queue.
Throws
StaticIllegalArgumentException—when initial is less than zero.

Returns
this

Since RTSJ 2.0 replaces the subclass method AperiodicParameters.
setInitialArrivalTimeQueuelLength(int).

6.3.3.11 Scheduler

public abstract class Scheduler

Inheritance

java.lang.Object
Scheduler

Description
An instance of Scheduler manages the execution of schedulables.

Subclasses of Scheduler are used for alternative scheduling policies and
should define an instance() class method to return the default instance of
the subclass. The name of the subclass should be descriptive of the policy,
allowing applications to deduce the policy available for the scheduler obtained
via Scheduler.getDefaultScheduler, e.g., EDFScheduler.

154 RTSJ 2.0 (Final Draft)

Scheduler

javazx.realtime 6.3

6.3.3.11.1 Constructors

Scheduler

Signature
protected
Scheduler ()

Description

Creates an instance of Scheduler.

6.3.3.11.2 Methods

getDefaultScheduler

Signature
public static javax.realtime.Scheduler
getDefaultScheduler()

Description

Gets a reference to the default scheduler.

Returns
a reference to the default scheduler.

setDefaultScheduler(Scheduler)

Signature
public static void

setDefaultScheduler (Scheduler scheduler)

Description

Sets the default scheduler. This is the scheduler given to instances of schedulables
when they are constructed by a Java thread. The default scheduler is set to the

required PriorityScheduler at startup.

Parameters

scheduler—The Scheduler that becomes the default scheduler assigned to new
schedulables created by Java threads. When null nothing happens.

Throws

StaticSecurityException—when the caller is not permitted to set the default

scheduler.

RTSJ 2.0 (Final Draft)

155

6 Scheduling Scheduler

inSchedulableExecutionContext
Signature
public static boolean
inSchedulableExecutionContext ()

Description

Determines whether the current calling context is a Schedulable: Realtime-
Thread or AsyncBaseEventHandler.

Returns
true when yes and false otherwise.

Since RTSJ 2.0

currentSchedulable
Signature

public static javax.realtime.Schedulable
currentSchedulable ()

Description

Gets the current execution context when called from a Schedulable execution
context.

Throws
ClassCastException—when the caller is not a Schedulable

Returns
the current Schedulable.

Since RTSJ 2.0

getPolicyName

Signature
public abstract java.lang.String
getPolicyName ()

Description

Gets a string representing the policy of this. The string value need not be
interned, but it must be created in a memory area that does not cause an illegal
assignment error when stored in the current allocation context and does not cause
a MemoryAccessError when accessed.

Returns
a String object which is the name of the scheduling policy used by this.

156 RTSJ 2.0 (Final Draft)

Scheduler javazx.realtime 6.3

reschedule(Thread, SchedulingParameters)
Signature
public abstract void
reschedule(Thread thread,
SchedulingParameters eligibility)

Description
Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it was a RealtimeThread with the given
eligibility. This does not make the affected thread a RealtimeThread, however,
and it will not have access to facilities reserved for instances of RealtimeThread.
Instances of RealtimeThread will be treated as if their scheduling parameters
were set to eligibility.

Parameters
thread—The thread to promote to realtime scheduling.

eligibility—A SchedulingParameters instance such as PriorityParameters
for a PriorityScheduler.
Throws
StaticIllegalArgumentException—when eligibility is not valid for the sched-
uler.

StaticIllegalStateException—when eligibility specifies parameters that are
out of range for the scheduler or the threads state or the intersection of affinity
in scheduling and the affinity of realtime thread group associated with thread
is empty.

StaticUnsupportedOperationException—when thread a normal Java thread
and the scheduler does not support promoting normal java threads.

Since RTSJ 2.0

createDefaultSchedulingParameters
Signature
protected javax.realtime.SchedulingParameters
createDefaultSchedulingParameters()

Description
Create a default SchedulingParameters instance for this schedulers. A
scheduler must define this in order to support setting Schedulable.
setSchedulingParameters with null as its parameter. Otherwise, null is not
allowed.

Throws
IllegalTaskStateException—when the current task is using a scheduler that
does not support null scheduling parameters.

Returns
parameters that are suitable for this scheduler in the current context.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 157

6 Scheduling SchedulingParameters

6.3.3.12 SchedulingParameters

public class SchedulingParameters

Inheritance

java.lang.Object
SchedulingParameters

Interfaces
Cloneable
Serializable
javax.realtime.Subsumable

Description

Subclasses of SchedulingParameters (PriorityParameters, ImportancePa-
rameters, and any others parameters defined for particular schedulers) provide
the parameters to be used by the Scheduler. Changes to the values in a param-
eters object affects the scheduling behavior of all the Schedulable objects to
which it is bound.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.12.1 Constructors

SchedulingParameters(Affinity)
Signature

protected

SchedulingParameters (Affinity affinity)

Description

Creates a new instance of SchedulingParameters.

Since RTSJ 2.0
Parameters
affinity—Sets the affinity for these parameters.

SchedulingParameters
Signature
protected
SchedulingParameters()

Description
Creates a new instance of SchedulingParameters with the default Affinity.

Since RTSJ 1.0.1

158 RTSJ 2.0 (Final Draft)

SchedulingParameters javazx.realtime 6.3

6.3.3.12.2 Methods

clone

Signature
public java.lang.Object
clone()

Description

Creates a clone of this.
o The new object is in the current allocation context.
» clone does not copy any associations from this and it does not implicitly
bind the new object to a schedulable.

Since RTSJ 1.0.1

isCompatible(Scheduler)
Signature
public boolean
isCompatible(Scheduler scheduler)

Description

Determines whether this scheduling parameters can be used by tasks scheduled
by scheduler.

Parameters
scheduler—The scheduler to check against
Returns
true when and only when this can be used with scheduler as the scheduler.

Since RTSJ 2.0

subsumes(SchedulingParameters)
Signature

public boolean

subsumes (SchedulingParameters other)

Description

Determines whether this parameters is more eligible than another.

Parameters
other—The other parameters object to be compared with.
Returns
true when and only when this parameters is more eligible than the other parameters.

RTSJ 2.0 (Final Draft) 159

6 Scheduling SporadicParameters

get Affinity

Signature

public javax.realtime.Affinity
getAffinity()

Description

Determines the affinity set instance associated of these parameters.

Returns
The associated affinity.

Since RTSJ 2.0

6.3

.3.13 SporadicParameters

public class SporadicParameters

Inh

eritance

java.lang.Object

ReleaseParameters<AperiodicParameters>
AperiodicParameters
SporadicParameters

Description

160

A notice to the scheduler that the associated schedulable will be released aperi-
odically but with a minimum time between releases.

When a reference to a SporadicParameters object is given as a parameter to
a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the SporadicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the SporadicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the SporadicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

The implementation must use modified copy semantics for each HighReso-
lutionTime parameter value. The value of each time object should be treated
as when it were copied at the time it is passed to the parameter object, but the
object reference must also be retained. Only changes to a SporadicParameters
object caused by methods on that object cause the change to propagate to all
schedulables using the parameter object. For instance, calling setCost on a
SporadicParameters object will make the change, then notify the scheduler that
the parameter object has changed. At that point the object is reconsidered for
every SO that uses it. Invoking a method on the RelativeTime object that is
the cost for this object may change the cost but it does not pass the change to
the scheduler at that time. That change must not change the behavior of the SOs
that use the parameter object until a setter method on the SporadicParameters

RTSJ 2.0 (Final Draft)

SporadicParameters javazx.realtime 6.3

object is invoked, the parameter object is used in setReleaseParameters(), or
the object is used in a constructor for an SO.
The following table gives the default parameter values for the constructors.

Table 6.13: SporadicParameters Default Values

Attribute Value

minlnterarrival time No default. A value must be sup-
plied

cost new RelativeTime(0,0)

deadline new RelativeTime(mit)

overrunHandler None

missHandler None

rousable false

MIT violation policy SAVE

Arrival queue overflow policy SAVE

Initial arrival queue length 0

This class enables the application to specify one of four arrival behaviors
defined by MinimumInterarrivalPolicy. Each behavior indicates what to do
when an arrival occurs that is closer in time to the previous arrival than the value
given in this class as minimum interarrival time. They also specify what to do
when, for any reason, the queue overflows, and what the initial size of the queue
should be.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.13.1 Constructors

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler, boolean)
Signature
public
SporadicParameters(RelativeTime minInterarrival,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

RTSJ 2.0 (Final Draft) 161

6 Scheduling SporadicParameters

Description

Creates a SporadicParameters object.

Since RTSJ 2.0
Parameters
minInterarrival—The release times of the schedulable will occur no closer than
this interval. This time object is treated as if it were copied. Changes to
minInterarrival will not affect the SporadicParameters object. There is no
default value. When minInterarrival is null an illegal argument exception
is thrown.

cost—Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime (0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value is
a new instance of minInterarrival: new RelativeTime(minInterarrival).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null no
overrun handler will be used.

missHandler—This handler is invoked when the run() method of the schedulable
is still executing after the deadline has passed. When null, no deadline miss
handler will be used.

rousable—Determines whether or not an instance of Schedulable can be prema-

turely released by a thread interrupt.
Throws

StaticIllegalArgumentException—when minInterarrival is null or its time
value is not greater than zero, or the time value of cost is less than zero, or
the time value of deadline is not greater than zero, or when the chronograph
associated with deadline and minInterarrival parameters are not identical
or not an instance of Clock.

IllegalAssignmentError—when minInterarrival, cost, deadline, overrun-
Handler or missHandler cannot be stored in this.

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler)
Signature
public
SporadicParameters(RelativeTime minInterarrival,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

162 RTSJ 2.0 (Final Draft)

SporadicParameters javazx.realtime 6.3

Equivalent to SporadicParameters(RelativeTime, RelativeTime, Rela-
tiveTime, AsyncEventHandler, AsyncEventHandler, boolean) with an ar-
gument list of (minInterarrival, cost, deadline, overrunHandler, mis-
sHandler, false).

SporadicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, boolean)
Signature
public
SporadicParameters(RelativeTime minInterarrival,
RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

Equivalent to SporadicParameters(RelativeTime, RelativeTime, Rela-
tiveTime, AsyncEventHandler, AsyncEventHandler, boolean) with an ar-
gument list of (minInterarrival, null, deadline, null, missHandler,
rousable).

Since RTSJ 2.0

SporadicParameters(RelativeTime)
Signature
public
SporadicParameters(RelativeTime minInterarrival)

Description

Equivalent to SporadicParameters(RelativeTime, RelativeTime, Rela-
tiveTime, AsyncEventHandler, AsyncEventHandler, boolean) with an ar-
gument list of (minInterarrival, null, null, null, null, false).

Since RTSJ 1.0.1

6.3.3.13.2 Methods

getMinimumlInterarrival

Signature
public javax.realtime.RelativeTime
getMinimumInterarrival ()

Description

Determines the current value of minimal interarrival.

RTSJ 2.0 (Final Draft) 163

6 Scheduling SporadicParameters

Returns
the object last used to set the minimal interarrival containing the current value of
minimal interarrival.

getMinimumlInterarrival(RelativeTime)
Signature
public javax.realtime.RelativeTime
getMinimumInterarrival (RelativeTime value)

Description

Determines the current value of minimum interarrival.

Parameters
value—A relative time object to fill and return.
Returns
value or, when null, the last object used to set the minimal interarrival, set to
the current value of minimal interarrival.

Since RTSJ 2.0

setMinimumlInterarrival(RelativeTime)
Signature
public javax.realtime.SporadicParameters
setMinimumInterarrival (RelativeTime minimum)

Description

Sets the minimum interarrival time.

Parameters
minimum—The release times of the schedulable will occur no closer than this interval.
Throws
StaticIllegalArgumentException—when minimum is null or its time value is
not greater than zero.

IllegalAssignmentError—when minimum cannot be stored in this.

Returns
this

Since RTSJ 2.0 returns itself
set MinimumlInterarrivalPolicy (MinimumInterarrivalPolicy)
Signature

public javax.realtime.SporadicParameters
setMinimumInterarrivalPolicy(MinimumInterarrivalPolicy policy)

Description

164 RTSJ 2.0 (Final Draft)

Rationale 6.4

Sets the policy for handling the arrival time queue when the new arrival time is
closer to the previous arrival time than the minimum interarrival time given in
this.

Parameters
policy—The current policy for MIT violations.
Since RTSJ 2.0

getMinimumlInterarrivalPolicy

Signature
public javax.realtime.MinimumInterarrivalPolicy
getMinimumInterarrivalPolicy()

Description

Gets the arrival time queue policy for handling minimal interarrival time under-
flow.

Returns
the minimum interarrival time violation behavior as a string.

Since RTSJ 2.0

6.4 Rationale

As specified, the required semantics of this section establish a scheduling policy
that is very similar to the scheduling policies found on the vast majority of realtime
operating systems and kernels in commercial use today. The semantics for the base
scheduler accommodate existing practice, which is a stated goal of the effort.

There is an important division between priority schedulers that force periodic con-
text switching between tasks at the same priority, and those that do not cause these
context switches. By not specifying time slicing[1] behavior this specification calls for
the latter type of priority scheduler as the base scheduler: FirstInFirstOutSched-
uler. In POSIX terms, SCHED_FIFO meets the RTSJ requirements for the base
scheduler.

Although a system may not implement the first release (start) of a schedulable
as unblocking that schedulable, under the base scheduler those semantics apply; i.e.,
the schedulable is added to the tail of the queue for its active priority.

Some research shows that, given a set of reasonable common assumptions, 32
distinct priority levels are a reasonable choice for close-to-optimal scheduling efficiency
when using the rate-monotonic priority assignment algorithm on a single processor
system (256 priority levels provide better efficiency). This specification requires at
least 28 distinct priority levels as a compromise noting that implementations of this
specification will exist on systems with logic executing outside of the Java Virtual
Machine and may need priorities above, below, or both for system activities.

The default behavior for implementations that support cost monitoring and
enforcement is that a schedulable receives no more than cost units of CPU time
during each release. The programmer must explicitly change the cost attribute to

RTSJ 2.0 (Final Draft) 165

6 Scheduling

override the scheduler. The RTSJ allows schedulables to self suspend during a release,
in addition to that which might be necessary to acquire a lock. These self suspensions
must be time bounded.

Any self suspension which is not time bounded may undermine the cost enforce-
ment model specified in this document, as it may result in a schedulable suspending
beyond its next release event. This can result in more time being allocated than any
associated schedulability analysis might assume. See Dos Santos and Wellings for a
full discussion on the problem [3].

Cost enforcement may be deferred while the overrun schedulable holds locks
that are out of application control, such as locks used to protect garbage collection.
Applications should include the resulting jitter in any analysis that depends on cost
enforcement.

6.4.1 RealtimeThreadGroup

The RealtimeThreadGroup was added in RTSJ 2.0 to support the notion of a sub-
system constrained by the greater system configuration. It also extends the existing
ThreadGroup limits for realtime scheduling. In addition, provides a way to enable
Java threads to be elevated to realtime scheduling priorities in a controlled fashion.

A combination of security manager policy and the RealtimeThreadGroup hierar-
chy may be used to constrain the maximum priority directly configurable by an entire
subsystem. To achieve this, a RealtimeThreadGroup with an appropriate maximum
priority must be created, the security manager must be configured to disallow threads
in that RealtimeThreadGroup from accessing their parent RealtimeThreadGroup,
and all threads for the subsystem must be created in that RealtimeThreadGroup.
This tactic may even be used recursively.

As previously mentioned, a motivation for adding RealtimeThreadGroup as a
subclass of ThreadGroup is to clarify the relationship between Java threads and
realtime schedulers. In order to obtain realtime priorities, a Java thread must belong
to a RealtimeThreadGroup. Its access to realtime scheduling is then restricted (with
the exception of priority inversion avoidance protocols, which ignore such restrictions)
by the configuration of its RealtimeThreadGroup. This enables Java threads to
obtain realtime priorities in a controlled and predictable fashion. Likewise, realtime
threads (but not necessarily other schedulables) may obtain nonrealtime conventional
Java priorities by calling Thread.setPriority() on their RealtimeThread object.
To start a realtime thread with a nonrealtime priority, this call must be made prior
to the time at which the realtime thread is started.

6.4.2 Multiprocessor Support

The support that the RTSJ provides for multiprocessor systems is primarily con-
strained by the support it can expect from the underlying operating system. Multi-
processor systems have two main variants: Single Instruction, Multiple Data (SIMD)
systems and Multiple Instruction, Multiple Data (MIMD) systems. Putting the first

166 RTSJ 2.0 (Final Draft)

Rationale 6.4

class aside, since it does not fit in well with the overall Java programming model?,
there is still a good deal of variation to consider. Though most commercially available
systems are symmetric multiprocessors (SMP) systems, nonuniform memory access
(NUMA) systems need consideration as well.

The notion of processor affinity is common across operating systems and has
become the accepted way to specify the constraints on which processor a thread can
execute. In some sense, processor affinities can be viewed as additional release or
scheduling parameters. The range of processors on which global scheduling is possible
is dictated by the operating system. For SMP architectures, global scheduling across
all processors in the system is typically supported. However, an application and an
operator can constrain threads and processes to execute only within a subset of the
processors. As the number of processors increases, the scalability of global scheduling
is called into question. Hence, for NUMA architectures, some partitioning of the
processors is likely to be performed by the OS. On these systems, global scheduling
across all processors will not be possible.

Many OSs give system operators command-level dynamic control over the set
of processors allocated to a processes. Consequently, the realtime JVM has no
control over whether processors are dynamically added or removed from its OS
process. Predictability is a prime concern of the RTSJ. Clearly, dynamic changes to
the allocated processors will have a dramatic, and possibly catastrophic, effect on
the ability of the program to meet timing requirements.

Being able to support a wide variety of multiprocessor systems has a direct impact
on the support for multiprocessing.

1. Since affinity is a widely used concept for controlling multiprocessor systems,

the specification adopts this notion.

2. In order to organize the API, affinity is modeled with its own class: Affinity.

3. An instance of Affinity is added to the SchedulingParameters class to
avoid support for affinities to be distributed throughout the specification with
a proliferation of new constructor methods.

4. The RealtimeThreadGroup has been added to provides affinity support for
conventional Java threads without modifying the thread object’s visible API
and provide a partitioning mechanism for affinities.

5. Since the set of affinities possible is system dependent, the affinity class provides
an array of predefined affinities. They can be used either to reflect the scheduling
arrangement of the underlying OS. A program is only allowed to dynamically
create new affinities with cardinality of one.

6. To support external dynamic control over the set of processors allocated to
a RTSJ program, the affinity class provides a means of notifying when the
processor set changes.

6.4.3 Impact of Clock Granularity

All time-triggered computation can suffer from release jitter. This is defined to be the
variation in the actual time the computation becomes available for execution from

3The lambda extension provides an intriguing paradigm for extending Java to supporting SIMD
COProcessors.

RTSJ 2.0 (Final Draft) 167

6 Scheduling

its scheduled release time. The amount of release jitter depends on two factors. The
first is the granularity of the clock/timer used to trigger the release. For example, a
periodic event handler that is due to be released at absolute time 7" will actually
be release at time T' + ¢. ¢ is the difference between 7" and the first time the timer
clock advances to T0, where T0 >= T'. The upper bound of § is the value returned
from calling the getResolution method of the associated clock. It is for this reason
that the implementation of release times for periodic activities must use absolute
rather than relative time values, in order to avoid the drift accumulating.

The second contribution to release jitter is also related to the clock/timer. It
is the duration of interval between T0 being signaled by the clock/timer and the
time this event is noticed by the underlying operating system or platform (perhaps
because interrupts have been disabled). A compliant implementation of SCJ should
document the maximum value of § for the realtime clock.

6.4.4 Deadline Miss Detection

Although RTSJ supports deadline miss detection, it is important to understand the
intrinsic limitations of the facility. The RTSJ facility is supported using a time-
triggered event. All time-triggered computation can suffer from release jitter. Hence,
any given deadline miss handler might not be released until sometime after the
deadline has expired. The handlers actual execution will depend on its priority
relative to other schedulables.

A related limitation is that a deadline can be missed but not detected. This can
occur when the deadline has been set at a smaller granularity than the detecting
timer. Consider an absolute deadline of D. Suppose that the next absolute time that
the timer can recognize is D + 6. When the associate thread finishes after D but
before D + ¢, it will have missed its deadline, but this miss will have been undetected.

A third limitation is due to the inherent race condition that is present when
checking for deadline misses. A deadline miss is defined to occur when a schedulable
has not completed the computation associated with its release before its deadline.
This completion event is signaled in the application code by the return of the
handleAsyncEvent method or a call to waitForNextRelease etc. When this occurs,
the infrastructure reschedules/cancels the timing event that signals the miss of a
deadline. This is clearly a race condition. The timer event could fire between the
last statement the completion event and the rescheduling/canceling of the timer
event. Hence a deadline miss could be signaled when arguably the application had
performed all of its computation.

168 RTSJ 2.0 (Final Draft)

Chapter 7

Synchronization

One of the strengths of Java is its language support for multithreading. This requires
synchronization. In a realtime system, there are additional requirements on this
synchronization. Therefore this specification not only tightens the semantics of the
synchronization declarations, but it also provides addition classes that specifically
manage synchronization.

This specification strengthens the semantics of Java synchronized code by
mandating monitor execution eligibility control, commonly referred to as priority
inversion control. The MonitorControl class is defined as the superclass of all such
execution eligibility control algorithms. Its subclasses PriorityInheritance and
PriorityCeilingEmulation avoid unbounded priority inversions, which would be
unacceptable in realtime systems.

The classes described below provide two main services.

1. They enable the setting of a priority inversion control policy either as the

default or for specific objects.

2. They also provide wait-free communication between schedulables (especially
instances of Schedulable, whose mayUseHeap is false) and regular Java
threads.

These classes establish a framework for priority inversion management that applies
to priority-oriented schedulers in general, and a specific set of requirements for the
base priority scheduler. The wait-free queue classes provide safe, concurrent access
to data shared between schedulables without heap access and schedulables subject
to garbage collection delays.

7.1 Definitions

Scheduling Eligibility Inversion — When a more important task is blocked by
a less important task. This is usually caused by synchronization, where a
more important task must wait for a less important task to release a required
resource, which can in turn be blocked by a task of intermediate importance.
The classical example is priority inversion in a system with a priority-based
scheduler.

Governed by — An object A that has been assigned (either by default or via an
explicit method call) to the MonitorControlPolicy « is said to be governed

169

7 Synchronization

by a.

Active Priority — The priority of a task used for scheduling at any given time. It
is the maximum of the tasks’s current base priority and any priority boosting
due to priority inversion avoidance mechanisms. The base priority can be
temporarily reduced by cost enforcement.

7.2 Semantics

Synchronization semantics has two main aspects: monitor control and scheduling.
The first determines which inversion avoidance is to use. The second determines how
it is done. Since only priority-based schedulers are defined in the RTSJ, the semantics
is only completely defined for priority-based schedulers.

7.2.1 Monitor Control

The specification provides for two monitor control policies with the following seman-

tics.

1. The initial default monitor control policy shall be PriorityInheritance. The

default policy can be altered by using the setMonitorControl () method.

2. Notwithstanding the preceding rule, an RTSJ implementation may allow the
program to establish a different initial default monitor control policy at JVM
startup. The program can query the initial default monitor control policy via
the method RealtimeSystem.getInitialMonitorControl.

The PriorityCeilingEmulation monitor control policy is also required.

4. An implementation that provides any additional MonitorControl subclasses
must document their effects, particularly with respect to priority inversion
control.

5. An object’s monitor control policy affects each task that attempts to lock the
object; i.e., regular Java threads as well as schedulables.

6. When a task enters synchronized code, the target object’s monitor control
policy must be supported by the thread schedulable’s scheduler; otherwise an
IllegalTaskStateException is thrown. An implementation that defines a
new MonitorControl subclass must document which schedulers, if any, do not
support this policy.

7. Since priorities in the interrupt priority range must be implemented by masking
hardware interrupts, a thread which enters a monitor with an interrupt priority
as its ceiling will cause the corresponding hardware interrupts to be masked
until the monitor is exited.

w

7.2.2 Priority Schedulers

The two schedulers provided by the RTSJ must both handle synchronization in
the same way. All tasks governed by these schedulers are subject to the following
semantics when they synchronize on objects governed by monitor control policies
defined in this section.

170 RTSJ 2.0 (Final Draft)

Semantics 7.2

w

. Each task has a base priority and an active priority. A task that holds a lock

on a PCE-governed object also has a ceiling priority.

. The base priority for a task is limited by the maximum priority of its realtime

thread groups’ maximum scheduling parameters.

. The active priority for a task is independent of its realtime thread groups.
. The base priority for a task t is initially the priority that t has when it is

created. The base priority is updated (immediately) as an effect of invoking
any of the following methods:

(a) pparam.setPriority(prio), where t is a schedulable with pparams as
its SchedulingParameters and pparams is an instance of PriorityPar-
ameters or one of its subclasses, where the new base priority is prio;

(b) t.setSchedulingParameters(pparams), where t is a schedulable and
pparams is an instance of PriorityParameters, where the new base
priority is pparams.getPriority();

(c) t.setPriority(prio), where t is a schedulable object the new base
priority is prio, and when it is a Java thread the new base priority is the
lesser of prio and the maximum priority for t’s thread group; and

(d) sg.setMaxEligibility(pparams), where sg is in t’s RealtimeThread-
Group hierarchy and the priority of pparams is less than the current
base priority of t, where the new base priority is the priority specified
in pparams as a result of setting the task’s scheduling parameters to
pparams.

5. When the task t does not hold any locks, its active priority is the same as its

base priority. In such a situation, modification of the priority of t through an
invocation of any of the above priority-setting methods for t causes t to be
placed at the tail of its relevant queue (ready, blocked on a particular object,
etc.) at its new priority when the new priority is higher than the old priority,
and at the beginning otherwise.

6. When task t holds one or more locks, then t has a set of priority sources. The

active priority for t at any point in time is the maximum of the priorities
associated with all of these sources. The priority sources resulting from the
monitor control policies defined in this section, and their associated priorities
for a schedulable t, are as follows:

(a) Source t itself
Associated Priority The base priority for t
Note This may have been changed (either syn-

chronously or asynchronously) while t has been
holding its lock(s).
(b) Source Each object locked by t and governed by a

PriorityCeilingEmulation policy

Associated Priority 'The maximum value ceil, where ceil is the
ceiling of a PriorityCeilingEmulation policy
governing an object locked by t.

Note This value is also referred to as the ceiling pri-
ority for t.

RTSJ 2.0 (Final Draft) 171

7 Synchronization

7.

Source Each task attempting to synchronize on an ob-
ject locked by t and governed by a Priority-
Inheritance policy

Associated Priority The maximum active priority over all such
threads and schedulables

Note This rule accounts for recursive priority inheri-
tance.
(d) Source Each task attempting to synchronize on an ob-

ject locked by t and governed by a Priority-
CeilingEmulation policy.
Associated Priority The maximum active priority over all such
threads and schedulables
Note This rule, which in effect allows a Priority-

CeilingEmulation lock to behave like a Prior-
ityInheritance lock, helps avoid unbounded
priority inversions that could otherwise occur in
the presence of nested synchronizations involv-
ing a mix of PriorityCeilingEmulation and
PriorityInheritance policies.

The addition of a priority source for t either leaves t’s active priority unchanged,

or increases it. When t’s active priority is unchanged, t’s status in its relevant

queue(s), e.g., blocked waiting for some object, is not affected. When t’s active

priority is increased, t is placed at the tail of the relevant queue(s) at its new

active priority level.

The removal of a priority source for t either leaves t’s active priority unchanged,

or decreases it. When t’s active priority is unchanged, then t’s status in its

relevant queue, e.g., blocked waiting for some object, is not affected. When t’s

active priority is decreased and t is either ready or running, then t must be

placed at the head of the ready queue at its new active priority level, When

t’s active priority is decreased and t is blocked, then t is queued at the end of

the queue for the new priority when it becomes unblocked.

The above rules have four main consequences.

1.

w

A thread or schedulable t’s priority sources from 6b are added and removed
synchronously; i.e., they are established based on t’s entering or leaving
synchronized code. However, priority sources from 6a, 6¢, and 6d may be
added and removed asynchronously, as an effect of actions by other threads or
schedulables.

A task holding only one lock, when it releases this lock, has its active priority
set to its base priority.

A task’s active priority is never less than its base priority.

When a task blocks at a call of obj.wait(), it releases the lock on obj and
hence relinquishes the priority source(s) based on obj’s monitor control policy.
The task will be queued at a new active priority that reflects the loss of these
priority sources.

When modifying the active priority of a task, the active priority may exceed
the priority range of the task’s scheduler. For example, a thread scheduled on the

172

RTSJ 2.0 (Final Draft)

Semantics 7.2

standard Java scheduler may be assigned a priority greater than 10, or a thread
scheduled on the round robin scheduler may be assigned a priority greater than the
round robin maximum priority but within the default scheduler priority range. In
both cases, the task will be rescheduled on the default scheduler until its active
priority is once again within the range schedulable on its associated scheduler. A
task scheduled on the round robin scheduler, however, need not be moved to the
default scheduler while its active priority remains within the allowable range for the
round robin scheduler. Any scheduler not defined in this standard must specify the
behavior of tasks associated with it with respect to these priority-based monitor
control policies.

Since base priorities may be shared (i.e., the same PriorityParameters object
may be associated with multiple schedulables), a given base priority may be the
active priority for some but not all of its associated schedulables. It is a consequence
of other rules that, when a thread or schedulable t attempts to synchronize on
an object obj governed by a PriorityCeilingEmulation policy with ceiling ceil,
then t’s active priority may exceed ceil but t’s base priority must not. In contrast,
once t has successfully synchronized on obj, then t’s base priority may also exceed
obj’s monitor control policy’s ceiling. Note that either or both of t’s base priority
and obj’s monitor control policy may have been dynamically modified.

7.2.3 Additional Schedulers

Schedulers based on criteria other than priority, for example, deadline in a deadline
first scheduler, must consider how synchronization is handled to avoid scheduling
eligibility inversion. Such a scheduler must conform to the following semantics for
tasks managed by that scheduler when they synchronize on objects with the monitor
control policies defined above.

1. An implementation that defines a new Scheduler subclass must document
which (if any) monitor control policies the new scheduler does not support.

2. An implementation must document how, if at all, the semantics of synchro-
nization differ from the rules defined for the default PriorityInheritance
instance and for the PriorityCeilingEmulation policy. It must supply docu-
mentation for the behavior of the new scheduler with priority inheritance and
priority ceiling emulation protocol equivalent to the semantics for the default
priority scheduler found in the previous section.

3. An implementation must also document the appropriate monitor control policy
for use when objects are shared between tasks under the control of different
schedulers.

4. The new Scheduler subclass must conform to the semantics for parameter
values, release control, dispatching, and cost monitoring described in Section
6.2.1.

RTSJ 2.0 (Final Draft) 173

7 Synchronization

MonitorControl

7.3 javax.realtime

7.3.1 Classes
7.3.1.1 MonitorControl

public abstract class MonitorControl

Inheritance

java.lang.Object
MonitorControl

Description
Abstract superclass for all monitor control policies.

7.3.1.1.1 Constructors

MonitorControl
Signature
protected
MonitorControl ()

Description
Invoked from subclass constructors.

7.3.1.1.2 Methods

getMonitorControl(Object)

Signature
public static javax.realtime.MonitorControl
getMonitorControl (Object monitor)

Description

Gets the monitor control policy of the given instance of Object.

Parameters
monitor—The object being queried.
Throws
StaticIllegalArgumentException—when monitor is null.

Returns
the monitor control policy of the monitor parameter.

174 RTSJ 2.0 (Final Draft)

MonitorControl javazx.realtime 7.3

getMonitorControl

Signature
public static javax.realtime.MonitorControl
getMonitorControl ()

Description

Gets the current default monitor control policy.

Returns
the default monitor control policy object.

setMonitorControl(MonitorControl)
Signature
public static javax.realtime.MonitorControl
setMonitorControl (MonitorControl policy)
throws StaticIllegalArgumentException,
StaticUnsupportedOperationException,
StaticIllegalStateException

Description

Sets the default monitor control policy. This policy does not affect the monitor
control policy of any already created object, it will, however, govern any object
whose creation happens after the method completes, until either

1. a new “per-object” policy is set for that object, thereby altering the monitor

control policy for a single object without changing the default policy, or

2. a new default policy is set.
Like the per-object method (see setMonitorControl(Object, MonitorCon-
trol), the setting of the default monitor control policy occurs immediately,
but may not be visible on all processors of a multicore system simultaneously.

Parameters
policy—The new monitor control policy. When null, the default MonitorControl
policy is not changed.
Throws
StaticSecurityException—when the caller is not permitted to alter the default
monitor control policy.
StaticIllegalArgumentException—when policy is not in immortal memory.
StaticUnsupportedOperationException—when policy is not a supported moni-
tor control policy.

Returns
the default MonitorControl policy in effect on completion.

Since RTSJ 1.0.1 The return type is changed from void to MonitorControl.

RTSJ 2.0 (Final Draft) 175

7 Synchronization PriorityCeilingEmulation

setMonitorControl(Object, MonitorControl)
Signature
public static javax.realtime.MonitorControl
setMonitorControl(Object obj,
MonitorControl policy)

Description

Immediately sets policy as the monitor control policy for obj.

Monitor control policy changes on a monitor that is actively contended may
lead to queued or enqueuing tasks following either the old or new policy in an
unpredictable fashion. Tasks enqueued after the monitor is released after a policy
change will follow the new policy.

A thread or schedulable that is queued for the lock associated with obj, or
is in obj’s wait set, is not rechecked (e.g., for a CeilingViolationException)
under policy, either as part of the execution of setMonitorControl or when it
is awakened to (re)acquire the lock.

The thread or schedulable invoking setMonitorControl must already hold
the lock on obj.

Parameters
obj—The object that will be governed by the new policy.

policy—The new policy for the object. When null nothing will happen.
Throws
StaticIllegalArgumentException—when obj is null or policy is not in immor-
tal memory.

StaticUnsupportedOperationException—when policy is not a supported moni-
tor control policy.

IllegalMonitorStateException—when the caller does not hold a lock on obj.

Returns
the current MonitorControl policy for obj, which will be replaced.

Since RTSJ 1.0.1 The return type has been changed from void to MonitorControl.

7.3.1.2 PriorityCeilingEmulation

public class PriorityCeilingEmulation

Inheritance

java.lang.Object
MonitorControl
PriorityCeilingEmulation

Description

Monitor control class specifying the use of the priority ceiling emulation protocol
(also known as the "highest lockers" protocol). Each PriorityCeilingEmulation

176 RTSJ 2.0 (Final Draft)

PriorityCeilingEmulation javaz.realtime 7.3

instance is immutable; it has an associated ceiling, initialized at construction and
queryable but not updatable thereafter.

When a thread or schedulable synchronizes on a target object governed by
a PriorityCeilingEmulation policy, then the target object becomes a priority
source for the thread or schedulable object. When the object is unlocked, it
ceases serving as a priority source for the thread or schedulable. The practical
effect of this rule is that the thread or schedulable’s active priority is boosted
to the policy’s ceiling when the object is locked, and is reset when the object is
unlocked. The value that it is reset to may or may not be the same as the active
priority it held when the object was locked; this depends on other factors (e.g.
whether the thread or schedulable’s base priority was changed in the interim).

The implementation must perform the following checks when a thread or
schedulable t attempts to synchronize on a target object governed by a Priori-
tyCeilingEmulation policy with ceiling ceil:

e t’s base priority does not exceed ceil

o t’s ceiling priority (when t is holding any other PriorityCeilingEmulation
locks) does not exceed ceil.

Thus for any object targetObj that will be governed by priority ceil-
ing emulation, the programmer needs to provide (via MonitorControl.
setMonitorControl(Object, MonitorControl)) a PriorityCeilingEmula-
tion policy whose ceiling is at least as high as the maximum of the following
values:

 the highest base priority of any thread or schedulable that could synchronize
on target0bj

o the maximum ceiling priority value that any task may have when it attempts
to synchronize on targetObj.

More formally,

e when a thread or schedulable t, whose base priority is pl, attempts to
synchronize on an object governed by a PriorityCeilingEmulation policy
with ceiling p2, where p1 > p2, then a CeilingViolationException is
thrown in t; likewise, a CeilingViolationException is thrown in t when
t is holding a PriorityCeilingEmulation lock and has a ceiling priority
exceeding p2.

The values of p1 and p2 are passed to the constructor for the exception and may
be queried by an exception handler.

A consequence of the above rule is that a thread or schedulable may nest
synchronizations on PriorityCeilingEmulation-governed objects as long as the
ceiling for the inner lock is not less than the ceiling for the outer lock.

The possibility of nested synchronizations on objects governed by a mix of
PriorityInheritance and PriorityCeilingEmulation policies requires one
other piece of behavior in order to avoid unbounded priority inversions. When a
thread or schedulable holds a PriorityInheritance lock, then any Priority-
CeilingEmulation lock that it either holds or attempts to acquire will exhibit
priority inheritance characteristics. This rule is captured above in the definition
of priority sources (4.d).

When a thread or schedulable t attempts to synchronize on a Priority-

RTSJ 2.0 (Final Draft) 177

7 Synchronization PriorityCeilingEmulation

CeilingEmulation-governed object with ceiling ceil, then ceil must be within
the priority range allowed by t’s scheduler; otherwise, an I1legalTaskStateEx-
ception is thrown. Note that this does not prevent a regular Java thread from
synchronizing on an object governed by a PriorityCeilingEmulation policy
with a ceiling higher than 10.

The priority ceiling for an object obj can be modified by invoking
MonitorControl.setMonitorControl(obj, newPCE) where newPCE’s ceiling
has the desired value.

See also MonitorControl PriorityInheritance, and CeilingViolationEx-
ception.

7.3.1.2.1 Methods

instance(int)

Signature
public static javax.realtime.PriorityCeilingEmulation
instance(int ceiling)

Description

Creates a PriorityCeilingFmulation object with the specified ceiling. This
object is in ImmortalMemory. All invocations with the same ceiling value return
a reference to the same object.

Parameters
ceiling—Priority ceiling value.
Throws
StaticIllegalArgumentException—when ceiling is out of the range of
permitted priority values (e.g., less than PriorityScheduler.instance() .
getMinPriority() or greater than PriorityScheduler.instance().
getMaxPriority() for the base scheduler).

Since RTSJ 1.0.1

getCeiling
Signature
public int
getCeiling()

Description
Gets the priority ceiling for this PriorityCeilingEmulation object.

Returns
the priority ceiling.

Since RTSJ 1.0.1

178 RTSJ 2.0 (Final Draft)

PriorityInheritance javaz.realtime 7.3

getMaxCeiling

Signature
public static javax.realtime.PriorityCeilingEmulation
getMaxCeiling()

Description

Gets a PriorityCeilingEmulation object whose ceiling is PriorityScheduler.
instance() .getMaxPriority (). This method returns a reference to a Priori-
tyCeilingEmulation object allocated in immortal memory. All invocations of
this method return a reference to the same object.

Returns
a PriorityCeilingEmulation object whose ceiling is PriorityScheduler.
instance() .getMaxPriority().

Since RTSJ 1.0.1

7.3.1.3 PriorityInheritance

public class Prioritylnheritance

Inheritance

java.lang.Object
MonitorControl
Prioritylnheritance

Description

Singleton class specifying use of the priority inheritance protocol. When a thread
or schedulable t1 attempts to enter code that is synchronized on an object obj
governed by this protocol, and obj is currently locked by a lower-priority thread
or schedulable t2, then
1. When t1’s active priority does not exceed the maximum priority allowed
by t2’s scheduler, then t1 becomes a priority source for t2; t1 ceases to
serve as a priority source for t2 when either t2 releases the lock on obj, or
t1 ceases attempting to synchronize on obj (e.g., when t1 incurs an ATC).
2. Otherwise (i.e., t1’s active priority exceeds the maximum priority allowed
by t2’s scheduler), an I1legalTaskStateException is thrown in t1.
Note on the second rule, throwing the exception in t1, rather than in t2,
ensures that the exception is synchronous.
See also MonitorControl and PriorityCeilingEmulation

7.3.1.3.1 Methods

RTSJ 2.0 (Final Draft) 179

7 Synchronization WaitFreeReadQueue

instance
Signature

public static javax.realtime.PriorityInheritance
instance()

Description

Obtains a reference to the singleton PriorityInheritance.
This is the default MonitorControl policy in effect at system startup.
The PriorityInheritance instance shall be allocated in ImmortalMemory.

7.3.1.4 WaitFreeReadQueue

public class WaitFreeRead Queue<T>

Inheritance
java.lang.Object

WaitFreeRead Queue<T>

Description

180

A queue that can be non-blocking for consumers. The WaitFreeReadQueue class
is intended for single-reader multiple-writer communication, although it may also
be used (with care) for multiple readers. A reader is generally an instance of
Schedulable which may not use the heap, and the writers are generally regular
Java threads or heap-using instances of Schedulable. Communication is through
a bounded buffer of Objects that is managed first-in-first-out. The principal
methods for this class are write and read.

o The write method appends a new element onto the queue. It is synchronized,
and blocks when the queue is full. It may be called by more than one writer,
in which case, the different callers will write to different elements of the
queue.

e The read method removes the oldest element from the queue. It is not
synchronized and does not block; it will return null when the queue is
empty. Multiple reader threads or schedulables are permitted, but when
two or more intend to read from the same WaitFreeWriteQueue they will
need to arrange explicit synchronization.

For convenience, and to avoid requiring a reader to poll until the queue is non-
empty, this class also supports instances that can be accessed by a reader that
blocks on queue empty. To obtain this behavior, the reader needs to invoke the
waitForData() method on a queue that has been constructed with a notify
parameter set to true.

WaitFreeReadQueue is one of the classes enabling instances of Schedulable
that may not use the heap and conventional Java threads to synchronize on an
object without the risk of that Schedulable instance incurring Garbage Collector
latency due to priority inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted. These are

RTSJ 2.0 (Final Draft)

WaitFreeReadQueue javazx.realtime 7.3

e java.lang.IllegalAccessException,

e java.lang.ClassNotFoundException, and

e java.lang.InstantiationException.
These exceptions were in error. Their deletion may cause compile-time errors in
code using the previous constructor. The repair is to remove the exceptions from
the catch clause around the constructor invocation.

7.3.1.4.1 Constructors

WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea,
boolean)
Signature
public
WaitFreeReadQueue (Runnable writer,
Runnable reader,
int maximum,
MemoryArea memory,
boolean notify)
throws StaticIllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read () method and a synchronized and
blocking write () method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will
select the nearest common scoped parent memory area, or when there is no such
scope it will use immortal memory. When all three parameters are null, the
queue will be allocated in immortal memory.

reader and writer are not necessarily the only instances of Schedule that
will access the queue; moreover, there is no check that they actually access the
queue at all.

Note that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters
writer—An instance of Runnable or null.

reader—An instance of Runnable or null.

maximum—The maximum number of elements in the queue.

RTSJ 2.0 (Final Draft) 181

7 Synchronization WaitFreeReadQueue

memory— The MemoryArea in which internal elements are allocated.

notify—A flag that establishes whether a reader is notified when the queue becomes

non-empty.
Throws

StaticIllegalArgumentException—when an argument holds an invalid value.
The writer argument must be null, a reference to a Thread, or a reference to
a schedulable (a RealtimeThread, or an AsyncEventHandler.) The reader
argument must be null, a reference to a Thread, or a reference to a schedulable.
The maximum argument must be greater than zero.

InaccessibleAreaException—when memory is a scoped memory that is not on
the caller’s scope stack.

MemoryScopeException—when either reader or writer is non-null and the memory
argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea)

Signature
public
WaitFreeReadQueue (Runnable writer,
Runnable reader,
int maximum,
MemoryArea memory)
throws StaticIllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read () method and a synchronized and
blocking write () method.

Equivalent to WaitFreeReadQueue(writer, reader, maximum, memory,
false)

WaitFreeReadQueue(int, MemoryArea, boolean)
Signature
public
WaitFreeReadQueue (int maximum,
MemoryArea memory,
boolean notify)
throws StaticIllegalArgumentException,
InaccessibleAreaException

Description

182 RTSJ 2.0 (Final Draft)

WaitFreeReadQueue javazx.realtime 7.3

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read () method and a synchronized and
blocking write () method.

Equivalent to WaitFreeReadQueue(null, null, maximum, memory, no-
tify)

Since RTSJ 1.0.1

WaitFreeReadQueue(int, boolean)
Signature
public
WaitFreeReadQueue (int maximum,
boolean notify)
throws StaticIllegalArgumentException

Description

Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking read () method and a synchronized
and blocking write () method.

Equivalent to WaitFreeReadQueue (null, null, maximum, null, notify)

Since RTSJ 1.0.1

7.3.1.4.2 Methods

clear

Signature
public void
clear()

Description
Sets this to empty.

Note, this method needs to be used with care. Invoking clear concurrently
with read or write can lead to unexpected results.

isEmpty

Signature
public boolean
isEmpty ()

Description

Queries the queue to determine if this is empty.
Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

RTSJ 2.0 (Final Draft) 183

7 Synchronization WaitFreeReadQueue

Returns
true when this is empty; false when this is not empty.

isFull

Signature

public boolean
isFull()

Description

Queries the system to determine if this is full.
Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true when this is full; false when this is not full.

read

Signature
public T
read()

Description

Reads the least recently inserted element from the queue and returns it as the
result, unless the queue is empty. When the queue is empty, null is returned.

Returns
the instance of T read, or else null when this is empty.

size

Signature
public int
size()

Description

Queries the queue to determine the number of elements in this.
Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
the number of positions in this occupied by elements that have been written but
not yet read.

184 RTSJ 2.0 (Final Draft)

WaitFreeReadQueue javaz.realtime 7.3

waitForData
Signature
public void
waitForData()
throws StaticUnsupportedOperationException,
InterruptedException

Description

When this is empty block until a writer inserts an element.

Note: When there is a single reader and no asynchronous invocation of clear,
then it is safe to invoke read after waitForData and know that read will find
the queue non-empty.

Implementation note, to avoid reader and writer synchronizing on the same
object, the reader should not be notified directly by a writer. (This is the issue
that the non-wait queue classes are intended to solve).

Throws
StaticUnsupportedOperationException—when this has not been constructed
with notify set to true.
InterruptedException—when the thread is interrupted by interrupt() or

AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

Since RTSJ 1.0.1 InterruptedException was added to the throws clause.

write(T)
Signature
public synchronized void
write(T value)
throws MemoryScopeException,
InterruptedException

Description

A synchronized and blocking write. This call blocks on queue full and will wait
until there is space in the queue.

Parameters
value—The java.lang.Object that is placed in the queue.
Throws

InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

MemoryScopeException—when a memory access error or illegal assignment error
would occur while storing object in the queue.

StaticIllegalArgumentException—when value is null.

Since RTSJ 1.0.1 The return type is changed to void since it always returned* true,
and InterruptedException was added to the throws clause.

RTSJ 2.0 (Final Draft) 185

7 Synchronization WaitFreeWriteQueue

7.3.1.5 WaitFreeWriteQueue

public class WaitFreeWriteQueue<T>

Inheritance
java.lang.Object
WaitFreeWriteQueue<T>

Description

A queue that can be non-blocking for producers. The WaitFreeWriteQueue
class is intended for single-writer multiple-reader communication, although it
may also be used (with care) for multiple writers. A writer is generally an
instance Schedulable which may not use the heap, and the readers are generally
conventional Java threads or instances of Schedulable which use the heap.
Communication is through a bounded buffer of Objects that is managed first-in-
first-out. The principal methods for this class are write and read.

e The write method appends a new element onto the queue. It is not
synchronized, and does not block when the queue is full (it returns false
instead). Multiple writer threads or schedulables are permitted, but when
two or more threads intend to write to the same WaitFreeWriteQueue they
will need to arrange explicit synchronization.

e The read method removes the oldest element from the queue. It is syn-
chronized, and will block when the queue is empty. It may be called by
more than one reader, in which case the different callers will read different
elements from the queue.

WaitFreeWriteQueue is one of the classes enabling schedulables which may
not use the heap and regular Java threads to synchronize on an object without
the risk of the schedulable incurring Garbage Collector latency due to priority
inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted from the throws clause. These are

e java.lang.IllegalAccessException,

e java.lang.ClassNotFoundException, and

e java.lang.InstantiationException.

Including these exceptions on the throws clause was an error. Their deletion
may cause compile-time errors in code using the previous constructor. The
repair is to remove the exceptions from the catch clause around the constructor
invocation.

7.3.1.5.1 Constructors

WaitFreeWriteQueue(Runnable, Runnable, int, MemoryArea)

Signature

186 RTSJ 2.0 (Final Draft)

WaitFreeWriteQueue javaz.realtime 7.3

public
WaitFreeWriteQueue (Runnable writer,
Runnable reader,
int maximum,
MemoryArea memory)
throws StaticIllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue in memory with an unsynchronized and nonblocking write ()
method and a synchronized and blocking read () method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will
select the nearest common scoped parent memory area, or when there is no such
scope it will use immortal memory. When all three parameters are null, the
queue will be allocated in immortal memory.

reader and writer are not necessarily the only threads or schedulables that
will access the queues; moreover, there is no check that they actually access the
queue at all.

Note, the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters

writer—An instance of Schedulable or null.

reader—An instance of Schedulable or null.

maximum—The maximum number of elements in the queue.

memory—The MemoryArea in which this and internal elements are allocated.
Throws

StaticIllegalArgumentException—when an argument holds an invalid value.
The writer argument must be null, a reference to a Thread, or a reference to
a schedulable (a RealtimeThread, or an AsyncEventHandler.) The reader
argument must be null, a reference to a Thread, or a reference to a schedulable.
The maximum argument must be greater than zero.

MemoryScopeException—when either reader or writer is non-null and the memory
argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

InaccessibleAreaException—when memory is a scoped memory that is not on
the caller’s scope stack.

WaitFreeWriteQueue(int, MemoryArea)

Signature

RTSJ 2.0 (Final Draft) 187

7 Synchronization WaitFreeWriteQueue

public
WaitFreeWriteQueue(int maximum,
MemoryArea memory)
throws StaticIllegalArgumentException,
InaccessibleAreaException

Description

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking write () method and a synchronized and
blocking read () method.

Equivalent to WaitFreeWriteQueue(null,null,maximum, memory)

Since RTSJ 1.0.1

WaitFreeWriteQueue(int)

Signature
public
WaitFreeWriteQueue(int maximum)
throws StaticIllegalArgumentException

Description

Constructs a queue containing up to maximum elements in immortal memory.
The queue has an unsynchronized and nonblocking write() method and a
synchronized and blocking read () method.

Equivalent to WaitFreeWriteQueue(null,null,mximum, null)

Since RTSJ 1.0.1

7.3.1.5.2 Methods

clear

Signature
public void
clear()

Description

Sets this to empty.

isEmpty

Signature
public boolean
isEmpty ()

188 RTSJ 2.0 (Final Draft)

WaitFreeWriteQueue javaz.realtime 7.3

Description

Queries the system to determine if this is empty.
Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true, when this is empty; false, when this is not empty.

isFull

Signature
public boolean
isFull()

Description

Queries the system to determine if this is full.
Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true, when this is full; false, when this is not full.

read

Signature
public synchronized T
read()
throws InterruptedException

Description

A synchronized and possibly blocking operation on the queue.

Throws
InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

Returns
the T least recently written to the queue. When this is empty, the calling schedulable
blocks until an element is inserted; when it is resumed, read removes and
returns the element.

Since RTSJ 1.0.1 Throws InterruptedException

size

Signature
public int
size()

RTSJ 2.0 (Final Draft) 189

7 Synchronization WaitFreeWriteQueue

Description
Queries the queue to determine the number of elements in this.
Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
the number of positions in this occupied by elements that have been written but
not yet read.

force(T)

Signature
public boolean
force(T value)
throws MemoryScopeException,
StaticIllegalArgumentException

Description

Unconditionally inserts value into this, either in a vacant position or else
overwriting the most recently inserted element. The boolean result reflects
whether, at the time that force() returns, the position at which value was
inserted was vacant (false) or occupied (true).

Parameters
value—An instance of T to insert.
Throws

MemoryScopeException—when a memory access error or illegal assignment error
would occur while storing value in the queue.

StaticIllegalArgumentException—when value is null.

Returns
true when value has overwritten an element that was occupied when the function
returns; false otherwise (it has been inserted into a position that was vacant
when the function returns)

write(T)
Signature
public boolean
write(T value)
throws MemoryScopeException,
StaticIllegalArgumentException

Description
Inserts value into this when this is non-full and otherwise has no effect on
this; the boolean result reflects whether value has been inserted. When the
queue was empty and one or more threads or schedulables were waiting to read,
then one will be awakened after the write. The choice of which to awaken depends
on the involved scheduler(s).

190 RTSJ 2.0 (Final Draft)

Rationale 7.4

Parameters
value—An instance of T to insert.
Throws

MemoryScopeException—when a memory access error or illegal assignment error
would occur while storing value in the queue.

StaticIllegalArgumentException—when value is null.

Returns
true when the queue was non-full; false otherwise.

7.4 Rationale

Java’s rules for synchronized code provide a means for mutual exclusion but do
not prevent unbounded priority inversions and thus are insufficient for realtime
applications. This specification strengthens the semantics for synchronized code by
mandating priority inversion control, in particular by furnishing classes for priority
inheritance and priority ceiling emulation. Priority inheritance is more widely
implemented in realtime operating systems and thus is the initial default mechanism
in this specification.

Priority ceiling emulation is also a useful protocol. It is necessary for blocking out
interrupts in interrupt service routines and simplifies scheduling analysis for single
core systems. Since it can easily be implemented in user space, it is required as well.

The interaction of priority-based monitor policies such as priority inheritance
and priority ceiling emulation with alternative schedulers that may not themselves
be priority-based is complicated and contains many corner cases that are dependent
on the scheduling protocol being implemented. Therefore, this specification does not
define these interactions, but requires that the alternative scheduler implementation
document the specifics of its interaction with the base priority-based schedulers
defined here.

Since the same object may be accessed from synchronized code by both a sched-
ulable which may not use the heap and an arbitrary thread or schedulable which
may, unwanted dependencies may result. To avoid this problem, this specification
provides three wait-free queue classes as an alternative means for safe, concurrent
data accesses without priority inversion.

RTSJ 2.0 (Final Draft) 191

7 Synchronization

192 RTSJ 2.0 (Final Draft)

Chapter 8

Asynchrony

One of the most important aspects of this specification is its support for reacting to
asynchronous events. This specifications provides a mechanism to bind the execution
of program logic to the occurrence of internal and external events. This is provided by
asynchronous event handling. Using this, an application can define some computation
that is executed every time an event is “fired,” either from a clock or from some
signal.

Asynchronous event handling is represented by the classes AsyncBaseEvent (AE)
and AsyncBaseEventHandler (AEH), along with their subclasses. An AE is an
object used to direct event occurrences to asynchronous event handlers. An event
occurrence may be initiated by application logic, by mechanisms internal to the RTSJ
implementation (see the handlers in PeriodicParameters), or by some external
input such as a clock, a signal, or an interrupt.

An asynchronous event occurrence is initiated in program logic by the invocation
of the fire method of an AE. The fire method dispatches all handlers associated
with its event. This means that dispatching occurs in the execution context of the
caller.

An asynchronous event that is initiated from an external source has additional
requirements and hence additional API features. These features are captured by the
ActiveEvent interface. Since external events do not have a full execution context of
their own, this category of events must provide an alternate execution context. In
order to give the programmer control over this execution context, the specification
defines the abstract class ActiveEventDispatcher to provide execution context for
dispatching.

By convention, subclasses provide a trigger method for initiating dispatching.
Triggering simply informs this execution context to start dispatching. The trigger
method is not defined in ActiveEventDispatcher, since some classes need a trigger
method with an argument and others do not. The types of ActiveEvent supported
are described in subsequent chapters.

Any variety of AEH may be associated with any variety of AE. The event actually
delivered depends on the combination of the two. The table 8.1 illustrates this.

Memory assignment rules apply to the payload passed to AsyncObjectEvent-
Handler.

An AEH is a schedulable embodying code that is released for execution in

193

8 Asynchrony

Table 8.1: Event to Handler Matrix

Types AsyncEvent AsyncLongEvent AsyncObjectEvent
AsyncEventHandler Nothing Nothing Nothing
AsyncLongEventHandler Event Id Payload Event 1d
AsyncObjectEventHandler | Event Object Event Object Payload

response to the occurrence of an associated event. Each AEH behaves as if it
is executed by a RealtimeThread except that it is not permitted to use the
waitForNextRelease() method. There is not necessarily a separate realtime
thread for each AEH, but the server realtime thread (returned by currentReal-
timeThread()) remains constant during each execution of the handleAsyncEvent ()
method. The implication of this is that calls to Thread.currentThread(),
RealtimeThread.currentRealtimeThread (), and access to thread-local storage
may have unpredictable results from release to release.

The default manner in which the implementation selects a realtime thread to
release a given AEH at a given release is defined by BlockableReleaseRunner, but
the user can override this default by defining a new subclass of its abstract superclass,
ReleaseRunner. The interface BoundSchedulable is used to mark subclasses of
AsyncBaseEventHandler, such as BoundAsyncEventHandler, which have a dedi-

cated realtime server thread. Such a server thread is associated with one and only
one bound AEH for the lifetime of that AEH.

8.1 Definitions

Asynchronous Event (AE) — An instance of one of the subclasses of the javax.
realtime.AsyncBaseEvent class.

Asynchronous Event Handler (AEH) — An instance of one of the subclasses
of the AsyncBaseEventHandler class.

Bound Asynchronous Event Handler (Bound AEH) — An instance of
a subclasses of the AsyncBaseEventHandler class that also implements
BoundSchedulable.

Bounded Execution Time — As a particular task or schedulable may not be
scheduled on a CPU for an arbitrarily long period of time, bounds on the
responsiveness of a given task or schedulable are defined in terms of execution
time during which that task is scheduled on a CPU and executing. Time during
which a task is blocked, either voluntarily, pending acquisition of a resource,
or due to a higher-priority task executing on the CPUs available to it, is not
considered execution time.

Firable Asynchronous Event Handler — An instance of AsyncBaseEventHand-
ler is firable whenever there is an agent that can release it. This includes cases
when the AsyncBaseEventHandler is

1. a miss handler or overrun handler of a RealtimeThread instance that has
been started but not yet terminated;

2. a handler associated with an AsyncBaseEvent that can be fired; or

3. a miss handler or overrun handler for an instance of AsyncBaseEvent-

194 RTSJ 2.0 (Final Draft)

Semantics 8.2

Handler that is firable.

Lexical Scope — The textual region within programming block, such as a construc-
tor, method, or statement, excluding the code within any class declarations,
and the code within any class instance creation expressions for anonymous
classes, contained therein. The lexical scope of a construct does not include
the bodies of any methods or constructors that this code invokes.

8.2 Semantics

Basic event types are passive: they are not directly associated with a thread of control.
They are intended to be fired programmatically. Handling external events, such
as clocks (see Chapter 10) and happenings (see Chapter 13), requires an execution
context. The ActiveEvent interface is provided to mark these and provide additional
execution semantics. Figure 8.1 illustrates the event hierarchy.

Figure 8.1: The Event Class Hierarchy

Visibility javax.realtime::AsyncBaseEvent javax.realtime::ActiveEvent
+ = public <<abstract>> <<interface>>
= protected +isRunning() : boolean +isActive() : boolean
~ = package +enable() +isRunning() : boolean
+disable() +enable()
+boolean hasHandlers() : boolean +disable()
+handledBy(AsyncBaseEventHandler) : boolean +start()
+addHandler(AsyncBaseEventHandler) +start(boolean disable)
+setHandler(AsyncBaseEventHandler) +stop()
+removeHandler(AsyncBaseEventHandler)
+createReleaseP:) : Rell Parameters 4
1
I
7 i
1
| { | :
javax.realtime::AsyncObjectEvent javax.realtime::AsyncEvent javax.realtime::AsyncLongEvent 1
+fire(Object value) +ire() +fire(long value) :
1
|
r H !
B ettt ==l m————————— [A J‘
|] [|
| I
| avax.realtime::Signal avax.realtime::Timer |
} +isSignalName(String name) : boolean Timer(HighResolutionTime, }
+getld(String name): int AsyncBaseEventHandler, |
[javaxrealtime::Happening | +get(String name): Signal TimeDispatcher) |
+Happening(String name) +get(int id): Signal +getDispatcher() : TimeDispatcher }
+Happening(String, HappeningDispatcher) +getPri 1d(): loni |
+isHappening(String name) : boolean +getld() : int !
+getHappening(String name): int +getName() : String !
+createld(String name): int +getDispatcher() : SignalDispatcher javax.realtime::RealtimeSignal
+getld(String name): int +send(long) : boolean +isRealtimeSignalName(String name) : boolean
+get(String name): Happening +getld(String name): int
+get(int id): Happening +get(String name): RealtimeSignal
#trigger(int id) +aetfi g : -
+getld(): int +getld() : int
+getName() : String +getName() : String
+trigger() +getDispatcher() : RealtimeSignalDispatcher
+getDispatcher() : HappeningDispatcher javax.realtime::OneShotTimer javax.realtime::PeriodicTimer +send(long, long) : boolean

8.2.1 Asynchronous Events and their Handlers

This following points give the basic semantics for asynchronous events and their

handlers. Semantics that apply to particular classes, constructors, methods, and

fields are provided in the class description and the constructor, method, and field
specifications.

1. When an asynchronous event occurs, either by program logic or by the triggering

of a happening, and the event is enabled, its attached handlers, i.e., all AEHs

RTSJ 2.0 (Final Draft) 195

8 Asynchrony

10.

11.

12.

13.

14.

15.

16.

that have been added to the AE by the execution of addHandler (), are released
for execution.

(a) Every occurrence of an event increments the fireCount in each attached

handler.
(b) Handlers may elect to execute logic for each occurrence of the event or
not.

When interrupt is called on an AEH whose rousable state is true, i.e., its
release parameters isRousable method returns true, that AEH will be released
independently of all other AEH attached to any common AE.
The release of attached handlers occurs in execution eligibility order, i.e, priority
order, from highest to lowest, with the default PriorityScheduler, and at
the active priority of the schedulable that invoked the fire method. The
release of handlers resulting from a happening or a timer must begin within a
bounded time (ignoring time consumed by unrelated activities in the system).
This worst-case response interval must be documented for some reference
architecture.
The release of attached handlers is an atomic operation with respect to adding
and removing handlers.
The logical release of an attached handler may occur before the previous release
has completed.
Releasing an AEH is accomplished through the handler’s instance of Re-
leaseRunner as depicted in Figure 8.2.
Each handler has an application configurable, handler type dependent queue for
holding events that have been released before a previous release has completed.
The overflow policy of a handler’s queue is also application configurable.
A deadline may be associated with each logical release of an attached handler.
The deadline is relative to the occurrence of the associated event.
AEs and AEHs may be created and used by any program logic within the
constraints of the memory assignment rules.
More than one AEH may be added to an AE. However, adding an AEH to an
AE has no effect if the AEH is already attached to the AE.
The same AEH may be added to more than one AE.
By default all AEHs are daemons: the daemon status is set by their constructors.
An AEH can be set to have a non daemon status after it has been created and
before it has been attached to an AE.
The object returned by currentRealtimeThread() while an AEH is running
shall behave with respect to memory access and assignment rules as if it were
allocated in the same memory area as the AEH.
System-related termination activity (such as execution of finalizers for scoped
objects in scopes that become unreferenced) triggered when an AEH becomes
unfirable is not subject to cost enforcement or deadline miss detection.
AEs and AEHs behave effectively as if changes to an AEH’s fireability are
contained in synchronized blocks, and the AEH holds that lock while it is in
the process of becoming unfirable.

AsyncBaseEvent provides two basic states: enabled and disabled. In the enabled
state, fire causes all associated handlers to be dispatched, whereas fire does nothing

196

RTSJ 2.0 (Final Draft)

Semantics 8.2

Figure 8.2: Releasing an AysncEventHandler

| :AsyncEvent | | :AsyncEventHandler | | :ReleaseRunner | | :ReleaseThread
T T T T T T
| | | | | |
) | | | | | |
_|f|re >—I releas ! ! ! ! I
BELLLEL N releage ' . ' '
} DD notify I I
<} | 2 |
Ka— T n] L
release | | |
> release I tif I
<_l—|handIeAE 4I>D notity N
< I < < | run :
| _I_<} T
I
: <H handIeAsanpEvent
|
| I |
| : | wait >
| . <K]
o | | |
Note: | : : |
| |
fire count is incremerited at | |
releaseland decremented just : - —>
I wait |
< T
I |
I |
I |
I I

T
before dandIeAsyncEVent :
|
f I
|
|

when the event is disabled. Figure 8.3 illustrates this state space.

Figure 8.3: States of a Simple AsyncBaseEvent

disable
new] (.)
Enabled Disabled
enable

8.2.2 Active Events and Dispatching

Active events refine the semantics of AsyncBaseEventHandler with the addition of
execution semantics to support second level interrupt handling. The fire method of
an event runs in the Java execution context of the caller. For events that represent
external signals, whether a certain time is reached or something has occurred, there
may not be a Java execution context for it, or at least that context is limited out

RTSJ 2.0 (Final Draft) 197

8 Asynchrony

of necessity, and often needs to have a very short duration of execution. Thus
dispatching an unlimited number of handlers in that context is not acceptable. This
dispatching requires an additional execution context for releasing handlers.

In order to be able to distinguish between events that are caused to be fired by an
outside mechanism from those that are fired from another thread, the former extend
the ActiveEvent interface. Each class implementing ActiveEvent must provide its
own trigger method for initiating the handler release by releasing another execution
context. Since the trigger methods may vary in the number of their arguments
depending on the type of event, they are not provided by the ActiveEvent class.
Each trigger method must act as if it calls the fire method on its event and then
terminates. Hence, trigger has the same functional behavior as fire, but runs in a
separate execution context.

This extra execution context is exposed to the user as an ActiveEventDispatcher.
There is an active event dispatcher for each kind of active event. The programmer
does not need to write a dispatcher, but just creates the one of the corresponding
type. The programmer determines the priority and the affinity of a dispatcher, as
well as the mapping between dispatchers and events.

Each event has a single dispatcher, but a dispatcher may serve many events. As
with fire, the dispatcher releases handlers in reverse priority order, i.e., from highest
to lowest. This enables the programmer to control the number of these execution
contexts and still optimize how handlers are released.

The state space of an ActiveEvent is an extension of the state space for an
AsyncBaseEvent depicted in Figure 8.3. ActiveEvent adds the notion of active and
inactive on top of enabled and disabled, as depicted in Figure 8.4. Note that the
enabled-disabled distinction only splits the active state. The inactive state is by
definition disabled.

Figure 8.4: States of an ActiveEvent

stop -> false

startDisabled

stop
-> true

disable

v

new Inactive Active Acti Active
Disabled Enabled Ctve _ Disabled
/I\ enable

OO

stop start
-> false

start
-> |llegalStateException

startDisabled
-> |llegalStateException

198 RTSJ 2.0 (Final Draft)

Semantics 8.2

8.2.3 Termination

An RTSJ program terminates when and only when
1. all nondaemon threads, either regular Java threads or realtime threads, are
terminated;
2. the fireCounts of all nondaemon instances of AsyncBaseEventHandler are
zero and all of their releases are completed; and
3. there are no nondaemon instances of AsyncBaseEventHandler attached to a
firable instance of ActiveEvent.
Bound and unbound AEH are treated alike. As with conventional Java, daemon
tasks, including service threads such as a dispatcher’s thread or the threads used to
run unbound AEH, do not hinder termination.

RTSJ 2.0 (Final Draft) 199

8 Asynchrony ActiveEvent

8.3 javax.realtime

8.3.1 Interfaces
8.3.1.1 ActiveEvent

public interface ActiveEvent<T extends Releasable<T, D>, D extends Ac-
tiveEventDispatcher<D, T>>

Interfaces
javax.realtime.Releasable

Description

This is the interface for defining the active event system. Classes implementing
ActiveEvent are used to connect events that take place outside the Java virtual
machine to RTSJ activities.

When an event takes place outside the Java virtual machine, some event-
specific code within the Java virtual machine executes. That code notifies the
ActiveEvent infrastructure of this event by calling a trigger method in the
event.

An instance of this class holds a reference to its dispatcher. When
ActiveEvent.isActive is true, the dispatcher must also hold a reference to the
instance. For this reason, whenever an active event instance is active, it is also a
execution context, so that this reference can be safely held during this time. Only
the active event instance must be assignable to its dispatcher instance under the
memory assignment rules, but not visa versa.

Since RTSJ 2.0

8.3.1.1.1 Methods

isActive

Signature
public boolean
isActive()

Description

Determines the activation state of this event, i.e., it has been started but not yet
stopped again.

Returns
true when active, false otherwise.

200 RTSJ 2.0 (Final Draft)

ActiveEvent javazx.realtime 8.3

isRunning
Signature
public boolean
isRunning ()

Description

Determines the running state of this event, i.e., it is both active and enabled.

Returns
true when active and enabled, false otherwise.

start
Signature
public void
start()
throws StaticIllegalStateException

Description

Starts this active event by registering it with its dispatcher.

Throws
StaticIllegalStateException—when this event has already been started or its
dispatcher has been destroyed.

start(boolean)
Signature
public void
start(boolean disabled)
throws StaticIllegalStateException

Description

Starts this active event by registering it with its dispatcher.

Parameters
disabled—True for starting in a disabled state.
Throws
StaticIllegalStateException—when this event has already been started or its
dispatcher has been destroyed.

stop
Signature
public boolean
stop(O)
throws StaticIllegalStateException

RTSJ 2.0 (Final Draft) 201

8 Asynchrony ActiveEvent

Description

Stops this active event by deregistering it from its dispatcher.

Throws
StaticIllegalStateException—when this event is not running.

Returns
the previous enabled state.

enable
Signature
public void
enable ()

Description

Changes the state of the event so that associated handlers are released on fire.
Each subclass provides a fire method as a means of dispatching its handlers when
requested. This method enables that request mechanism.

disable

Signature
public void
disable()

Description

Changes the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as a means of dispatching its handlers when
requested. This method disables that request mechanism.

getDispatcher

Signature
public D extends javax.realtime.ActiveEventDispatcher<D, T>
getDispatcher ()

Description

Obtain the current dispatcher for this event.

Returns
the dispatcher associated with this event.

202 RTSJ 2.0 (Final Draft)

ReleaseRunner.Proxy javaz.realtime 8.3

setDispatcher(D)
Signature

public D extends javax.realtime.ActiveEventDispatcher<D, T>
setDispatcher (D dispatcher)

Description

Change the current dispatcher for this event. When dispatcher is null, the
default dispatcher is restored.

Returns
the dispatcher associated with this event.

8.3.1.2 Releasable

public interface Releasable<T extends Releasable<T, D>, D extends Ac-
tiveEventDispatcher<D, T>>

Description

A base interface for everything that can be dispatched and hence has a asyn-
chronous release cycle. This unifies the concept behind active events and
RealtimeThread.waitForNextRelease. Thus a realtime thread can handle
events which do not have a payload too.

Since RTSJ 2.0

8.3.1.2.1 Methods

getDispatcher

Signature
public D extends javax.realtime.ActiveEventDispatcher<D, T>
getDispatcher ()

Description

Obtains the dispatcher for this.

Returns
that dispatcher.

RTSJ 2.0 (Final Draft) 203

8 Asynchrony ReleaseRunner.Proxy

8.3.1.3 ReleaseRunner.Proxy

public interface ReleaseRunner.Proxy

Interfaces
Runnable
Comparable

Description

An interface to encapsulate the execution contexts for running an instance
of AsyncBaseEventHandler. It is used for implementing proxys for running
handlers. This is necessary for supporting execution in memory areas other than
PerennialMemory.

8.3.1.3.1 Methods

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters ()

getReleaseTime

Signature
public javax.realtime.AbsoluteTime
getReleaseTime ()

getHandler

Signature
public javax.realtime.AsyncBaseEventHandler
getHandler ()

compareTo(Proxy)
Signature
public int
compareTo (ReleaseRunner.Proxy r2)

Description

Compare the release parameters of this Proxy.

204 RTSJ 2.0 (Final Draft)

ActiveEventDispatcher javaz.realtime 8.3

8.3.1.4 Subsumable

public interface Subsumable<T>

Description

A partial ordering relationship. One object subsumes another if and only if the
set represented by other is a subset of this object}. Objects which represent
disjoint set or sets whose intersection is less than either of the objects sets are
mutually not subsumable.

Since RTSJ 2.0

8.3.1.4.1 Methods

subsumes(T)
Signature
public boolean
subsumes (T other)

Description

Indicates that some set represented by other is subsumed by the set represented
by this object.

Parameters
other—The object to be compared with.
Returns
true when and only when the set represented by other is subsumed by the set
represented by this object.

8.3.2 Classes
8.3.2.1 ActiveEventDispatcher

public abstract class ActiveEventDispatcher<D extends ActiveEventDispatcher<D,
T>, T extends Releasable<T, D>>

Inheritance

java.lang.Object
ActiveEventDispatcher<D extends ActiveEventDispatcher<D, T>, T extends

Releasable<T, D>>

Description

RTSJ 2.0 (Final Draft) 205

8 Asynchrony ActiveEventDispatcher

Provides a means of dispatching a set of Releasable instances. It acts as if
it contains a daemon RealtimeThread to perform this task. The priority of
this thread can be specified when a dispatcher object is created. The default
dispatcher runs at the highest realtime priority on the base scheduler. Dispatchers
do not maintain a queue of pending event.

Application code cannot extend this class.

Since RTSJ 2.0

8.3.2.1.1 Constructors

ActiveEventDispatcher(RealtimeThread)
Signature
protected
ActiveEventDispatcher (RealtimeThread thread)
throws StaticIllegalStateException

Description

Creates a new dispatcher. The thread is provided by the caller and is specific to
the type of dispatcher. The scheduling of the thread and its thread group are
also provided by the caller.

Parameters
thread—a realtime thread set up to run the dispatcher.
Throws

StaticIllegalArgumentException—thread is null.

8.3.2.1.2 Methods

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description

Gets a reference to the Scheduler object for this schedulable.

Returns
a reference to the associated Scheduler object.

206 RTSJ 2.0 (Final Draft)

ActiveEventDispatcher javaz.realtime 8.3

setScheduler(Scheduler)

Signature
public javax.realtime.ActiveEventDispatcher<D, T>
setScheduler (Scheduler scheduler)
throws StaticSecurityException,
IllegalTaskStateException

Description
Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

Parameters

scheduler—A reference to the scheduler that will manage execution of this sched-

ulable. Null is not a permissible value.
Throws

StaticIllegalArgumentException—when scheduler is null, or the schedul-
able’s existing parameter values are not compatible with scheduler. Also
when this schedulable may not use the heap and scheduler is located in heap
memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

StaticSecurityException—when the caller is not permitted to set the scheduler
for this schedulable.

IllegalTaskStateException—when scheduler has scheduling or release param-
eters that are not compatible with the new scheduler and this schedulable is
running.

Returns
this

setScheduler(Scheduler, SchedulingParameters)
Signature
public javax.realtime.ActiveEventDispatcher<D, T>
setScheduler (Scheduler scheduler,
SchedulingParameters scheduling)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler—A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.

RTSJ 2.0 (Final Draft) 207

8 Asynchrony ActiveEventDispatcher

scheduling—A reference to the SchedulingParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws

StaticIllegalArgumentException—when scheduler is null or the parameter
values are not compatible with scheduler. Also thrown when this schedulable
may not use the heap and scheduler, scheduling release, memoryParame-
ters, or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

StaticSecurityException—when the caller is not permitted to set the scheduler
for this schedulable.

Returns
this

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters ()

Description

Determines how the thread associated with this dispatcher is scheduled.

Returns
the scheduling parameters of the dispatcher thread.

setSchedulingParameters(SchedulingParameters)
Signature
public javax.realtime.ActiveEventDispatcher<D, T>
setSchedulingParameters(SchedulingParameters scheduling)
throws IllegalTaskStateException,
IllegalAssignmentError,
StaticIllegalArgumentException

Description

Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the
default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.)

208 RTSJ 2.0 (Final Draft)

ActiveEventDispatcher javaz.realtime 8.3

Throws
StaticIllegalArgumentException—when scheduling is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.
IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalTaskStateException—when the task is active and the new scheduling
parameters are not compatible with the current scheduler or the intersection
of affinity in scheduling and the affinity of this object’s realtime thread
group is empty, or when the affinity of scheduling is not contained in the
affinity of the current this object’s realtime thread group or when the affinity
in scheduling is invalid.

Returns
this

getRealtimeThread Group

Signature
public javax.realtime.RealtimeThreadGroup
getRealtimeThreadGroup ()

Description

Determines in which group the thread associated with this dispatcher is.

Returns
the realtime thread group of the dispatcher thread.

getThread

Signature
protected javax.realtime.RealtimeThread
getThread ()

Description
Optain the thread behind the dispatcher.

Returns
the realtime thread behind the dispatcher.

isRegistered(T)

Signature
public abstract boolean
isRegistered(T event)

Description

Test wether or not a given event is registered with this dispatcher.

RTSJ 2.0 (Final Draft) 209

8 Asynchrony ActiveEventDispatcher

Parameters
event—The event to test
Returns
true when event is registered with this dispatcher.

register(T)
Signature
protected abstract void
register(T event)
throws RegistrationException,
StaticIllegalStateException

Description

Registers an active event with this dispatcher. Registering an event prevents the
event from being programmatically destroyed, but it may not hold the dispatcher
from being collected when the dispatcher is in a more deeply nested scope.

Parameters
event—The event to register
Throws

RegistrationException—when event is already registered.

StaticIllegalStateException—when this object has been destroyed.

activate(T)
Signature
protected void
activate(T event)
throws RegistrationException,
StaticIllegalArgumentException

Description

Activate an active event registered with this dispatcher.

Parameters
event—The event to register
Throws

RegistrationException—when event is not already registered.

StaticIllegalStateException—when event is stopped.

deregister(T)

Signature
protected abstract void
deregister (T event)

210 RTSJ 2.0 (Final Draft)

ActiveEventDispatcher javaz.realtime 8.3

throws RegistrationException,
StaticIllegalStateException

Description

Deregisters an active event from this dispatcher, breaking its association with this
dispatcher. This should only happen when an event is assoicated with another
dispather.

Parameters
event—The event to deregister
Throws

StaticIllegalStateException—when this object has been destroyed
StaticIllegalArgumentException—when event is not stopped or is null.

deactivate(T)
Signature
protected void
deactivate(T event)
throws DeregistrationException,
StaticIllegalStateException,
StaticIllegalArgumentException

Description

Deactivate an active event registered with this dispatcher.

Parameters
event—The event to deregister
Throws

DeregistrationException—when event is not already registered.
StaticIllegalStateException—when this object has been destroyed.
StaticIllegalArgumentException—when event is not stopped or is null.

destroy
Signature
public abstract void
destroy ()
throws StaticIllegalStateException

Description

Makes the dispatcher unusable.

Throws
StaticIllegalStateException—when called on a dispatcher that has one or more
registered objects.

RTSJ 2.0 (Final Draft) 211

8 Asynchrony AsyncBaseEvent

8.3.2.2 AsyncBaseEvent

public abstract class AsyncBaseEvent

Inheritance

java.lang.Object
AsyncBaseEvent

Description

This is the base class for all asynchronous events, where asynchronous is in regards
to running code, not external time. This class unifies the original AsyncEvent
with AsyncLongEvent and AsyncObjectEvent.

Note that when this class is collected, all its handlers are automatically
removed as if setHandler was called with a null parameter.

Since RTSJ 2.0

8.3.2.2.1 Methods

isRunning
Signature
public boolean
isRunning()

Description

Determines the firing state (releasing or skipping) of this event, i.e., whether it is
enabled or disabled.

Returns
true when releasing, false when skipping.

Since RTSJ 2.0 Inherited by AyncEvent

handledBy(AsyncBaseEventHandler)

Signature
public boolean
handledBy(AsyncBaseEventHandler handler)

Description

Determines whether or not the handler given as the parameter is associated with
this.

Parameters
handler—The handler to be tested to determine if it is associated with this.
Returns

212 RTSJ 2.0 (Final Draft)

AsyncBaseEvent javaz.realtime 8.3

true when the parameter is associated with this. False when handler is null or
the parameters is not associated with this.

Since RTSJ 2.0 Inherited by AyncEvent

enable
Signature
public void
enable()

Description

Changes the state of the event so that associated handlers are released on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method enables that request mechanism.

Since RTSJ 2.0 Inherited by AyncEvent

disable
Signature
public void
disable()

Description

Changes the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method disables that request mechanism.

Since RTSJ 2.0 Inherited by AyncEvent

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler (AsyncBaseEventHandler handler)

Description

Adds a handler to the set of handlers associated with this event. An instance of
AsyncBaseEvent may have more than one associated handler. However, adding
a handler to an event has no effect when the handler is already attached to the
event.

The execution of this method is atomic with respect to the execution of the
fire() method.

Note that there is an implicit reference to the handler stored in this. The
assignment must be valid under any applicable memory assignment rules.

Parameters
handler—The new handler to add to the list of handlers already associated with
this. When handler is already associated with the event, the call has no effect.

RTSJ 2.0 (Final Draft) 213

8 Asynchrony AsyncBaseEvent

Throws
StaticIllegalArgumentException—when handler is null or the handler has
PeriodicParameters. Only the subclass PeriodicTimer is allowed to have
handlers with PeriodicParameters.

IllegalAssignmentError—when this AsyncBaseEvent cannot hold a reference to
handler.

StaticIllegalStateException—when the configured Scheduler and Schedu-
lingParameters for handler are not compatible with one another.

ScopedCycleException—when handler has an explicit initial scoped memory area
that has already been entered from a memory area other than the area where
handler was allocated.

Since RTSJ 2.0 Inherited by AyncEvent

setHandler(AsyncBaseEventHandler)
Signature

public void

setHandler (AsyncBaseEventHandler handler)

Description

Associates a new handler with this event and removes all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()
method.

Parameters
handler—The instance of AsyncBaseEventHandler to be associated with this.
When handler is null then no handler will be associated with this,
i.e., it behaves effectively as if setHandler(null) invokes removeHan-
dler (AsyncBaseEventHandler) for each associated handler.
Throws
StaticIllegalArgumentException—when handler has PeriodicParameters.
Only the subclass PeriodicTimer is allowed to have handlers with Peri-
odicParameters.
IllegalAssignmentError—when this AsyncBaseEvent cannot hold a reference to
handler.

Since RTSJ 2.0 Inherited by AyncEvent

removeHandler(AsyncBaseEventHandler)
Signature

public void

removeHandler (AsyncBaseEventHandler handler)

Description

Removes a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

214 RTSJ 2.0 (Final Draft)

AsyncBaseEventHandler javaz.realtime 8.3

A removed handler continues to execute until its fireCount becomes zero and
it completes.

When handler has a scoped non-default initial memory area and execution
of this method causes handler to become unfirable, this method shall not return
until all related finalization has completed.

Parameters
handler—The handler to be disassociated from this. When null nothing happens.
When the handler is not already associated with this then nothing happens.
Since RTSJ 2.0 Inherited by AyncEvent

hasHandlers
Signature
public boolean
hasHandlers ()

Description
Determines whether or not this event has any handlers.

Returns
true when and only when at least one handler is associated with this event.

Since RTSJ 2.0 Inherited by AyncEvent

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters<7>
createReleaseParameters()

Description

Creates a ReleaseParameters object appropriate to the release characteristics
of this event. The default is the most pessimistic: AperiodicParameters. This
is typically called by code that is setting up a handler for this event that will
fill in the parts of the release parameters for which it has values, e.g., cost. The
returned ReleaseParameters object is not bound to the event. Any changes in
the event’s release parameters are not reflected in previously returned objects.
When an event returns PeriodicParameters, there is no requirement for an
implementation to check that the handler is released periodically.

Returns
a new ReleaseParameters object.

8.3.2.3 AsyncBaseEventHandler

public abstract class AsyncBaseEventHandler

Inheritance

RTSJ 2.0 (Final Draft) 215

8 Asynchrony AsyncBaseEventHandler

java.lang.Object
AsyncBaseEventHandler

Interfaces
javax.realtime.Schedulable

Description

This is the base class for all asynchronous event handlers, where asynchronous is in
regards to running code, not external time. This class unifies the original Async-
EventHandler with AsyncLongEventHandler and AsyncObjectEventHandler.
Each of these subclasses has its own handleAsyncEvent method, whose only
difference is whether and what argument it has.

Since RTSJ 2.0

8.3.2.3.1 Methods

getCurrentReleaseTime

Signature
public javax.realtime.AbsoluteTime
getCurrentReleaseTime ()

Description

Gets the last release time of this handler.

Throws
StaticIllegalStateException—when this handler has not been released since it
was last started.

Returns
a reference to a newly-created AbsoluteTime object representing this handler’s last
release time. When the handler has not been released since it was last started,
throws an exception.

Since RTSJ 2.1

getCurrentReleaseTime(AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
getCurrentReleaseTime (AbsoluteTime dest)

getPendingFireCount
Signature
protected int
getPendingFireCount ()

216 RTSJ 2.0 (Final Draft)

AsyncBaseEventHandler javaz.realtime 8.3

Description

This is an accessor method for fireCount. The fireCount field nominally holds
the number of times associated instances of AsyncEvent have occurred that
have not had the method handleAsyncEvent () invoked. It is incremented and
decremented by the implementation of the RTSJ. The application logic may
manipulate the value in this field for application-specific reasons.

Returns
the value held by fireCount.

get AndClearPendingFireCount
Signature
protected int
getAndClearPendingFireCount ()

Description

This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This
may be used by handlers for which the logic can accommodate multiple releases
in a single execution.

The general form for using this is

public void handleAsyncEvent ()

{

int numberOfReleases = getAndClearPendingFireCount();
<handle the events>

}

The effect of a call to getAndClearPendingFireCount on the scheduling of this
AEH depends on the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to setting the value to zero.

get AndDecrementPendingFireCount
Signature
protected int
getAndDecrementPendingFireCount ()

Description

This is an accessor method for fireCount. This method atomically decrements,
by one, the value of fireCount (when it is greater than zero) and returns the value
from before the decrement. This method can be used in the handleAsyncEvent ()
method to handle multiple releases:

RTSJ 2.0 (Final Draft) 217

8 Asynchrony AsyncBaseEventHandler

public void handleAsyncEvent ()
{

<setup>

do

{

<handle the event>

}

while(getAndDecrementPendingFireCount() > 0);

}

This construction is necessary only in cases where a handler wishes to avoid
the setup costs, since the framework guarantees that handleAsyncEvent () will
be invoked whenever the fireCount is greater than zero. The effect of a call to
getAndDecrementPendingFireCount on the scheduling of this AEH depends on
the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to decrementing it by one.

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea ()

Description

This is an accessor method for the initial instance of MemoryArea associated with
this.

Returns
the instance of MemoryArea which was passed as the area parameter when this
was created (or the default value when area was allowed to default.

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters ()

Description

Returns
a reference to the current MemoryParameters object.

218 RTSJ 2.0 (Final Draft)

AsyncBaseEventHandler

javazx.realtime 8.3

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters<7>
getReleaseParameters()

Description

Returns
a reference to the current ReleaseParameters object.

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler ()

Description

Returns
a reference to the associated Scheduler object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description

Returns

A reference to the current SchedulingParameters object.

getReleaseRunner

Signature
public javax.realtime.ReleaseRunner
getReleaseRunner ()

Description

Obtain the configuration parameters.

Returns
the current configuration parameters.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft)

219

8 Asynchrony AsyncBaseEventHandler

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Gets a reference to the ConfigurationParameters object for this schedulable.

Returns
the ConfigurationParameters instance of its ReleaseRunner instance, i.e.,
getReleaseRunner () .getConfigurationParameters ()

setMemoryParameters(MemoryParameters)
Signature
public javax.realtime.Schedulable
setMemoryParameters (MemoryParameters memory)

Description

Parameters
memory—A MemoryParameters object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)
Throws
StaticIllegalArgumentException—when memory is not compatible with the
schedulable’s scheduler. Also when this schedulable may not use the heap and
memory is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.

Returns
this

Since RTSJ 2.0 returns itself

setReleaseParameters(ReleaseParameters)
Signature
public javax.realtime.Schedulable
setReleaseParameters(ReleaseParameters<?> release)

Description

Parameters

220 RTSJ 2.0 (Final Draft)

AsyncBaseEventHandler javaz.realtime 8.3

release—A ReleaseParameters object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)

Throws

StaticIllegalArgumentException—when release is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
release is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.

IllegalTaskStateException—when the task is running and the new release pa-
rameters are not compatible with the current scheduler.

Returns
this

Since RTSJ 2.0 returns itself

setScheduler(Scheduler)

Signature
public javax.realtime.Schedulable
setScheduler (Scheduler scheduler)

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

For an instance of AsyncBaseEventHandler, the Schedulable is running for
the purpose of setting the scheduler when it is attached to an AsyncEvent, even
when AsyncBaseEvent.isRunning() would return false for that event.

Parameters
scheduler—A reference to the scheduler that will manage execution of this sched-
ulable. Null is not a permissible value.
Throws
StaticIllegalArgumentException—when scheduler is null, or the schedul-
able’s existing parameter values are not compatible with scheduler. Also
when this schedulable may not use the heap and scheduler is located in heap
memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

StaticSecurityException—when the caller is not permitted to set the scheduler
for this schedulable.

RTSJ 2.0 (Final Draft) 221

8 Asynchrony AsyncBaseEventHandler

IllegalTaskStateException—when scheduler has scheduling or release param-
eters that are not compatible with the new scheduler and this schedulable is
running.

Returns
this

Since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)
Signature
public javax.realtime.Schedulable
setScheduler (Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memoryParameters)

Description

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler—A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.

scheduling—A reference to the SchedulingParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws

StaticIllegalArgumentException—when scheduler is null or the parameter
values are not compatible with scheduler. Also thrown when this schedulable
may not use the heap and scheduler, scheduling release, memoryParame-
ters, or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

StaticSecurityException—when the caller is not permitted to set the scheduler
for this schedulable.

Since RTSJ 2.0

222 RTSJ 2.0 (Final Draft)

AsyncBaseEventHandler javaz.realtime 8.3

setSchedulingParameters(SchedulingParameters)
Signature
public javax.realtime.Schedulable
setSchedulingParameters(SchedulingParameters scheduling)

Description

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the
default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.). When the
Affinity is not defined in scheduling, then the affinity that will be used is the
one of the creating Thread. However, this default affinity will not appear when
calling getSchedulingParameters, unless explicitly set using this method.
Throws
StaticIllegalArgumentException—when scheduling is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalTaskStateException—when the task is active and the new scheduling
parameters are not compatible with the current scheduler or when the task is
active and the affinity in scheduling is not a subset of the affinity of this
object’s RealtimeThreadGroup or when the task is active and the affinity in
scheduling is invalid.

Returns
this

Since RTSJ 2.0, method returns a reference to this.

setDaemon(boolean)
Signature
public final void
setDaemon (boolean on)

Description

Parameters
on—When true, marks this event handler as a daemon handler.
Throws
IllegalThreadStateException—when this schedulable is active.
StaticSecurityException—when the current schedulable cannot modify this
event handler.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 223

8 Asynchrony AsyncBaseEventHandler

isDaemon

Signature
public final boolean
isDaemon ()

Description

Returns
true when this event handler is a daemon handler; false otherwise.

Since RTSJ 2.0

isArmed
Signature
public boolean
isArmed ()

Description
Determine whether or not this handler is attached to an event.

Returns
true when it is attached to at least one event; false otherwise.

getQueueLength
Signature
public int
getQueueLength ()

Description

Finds the current length of the event queue. The event queue holds the time and
payload of all released events that are still outstanding. The queue may have a
length of zero.

Returns
the queue length.

Since RTSJ 2.0 Inherited by AyncEventHandler

mayUseHeap
Signature
public boolean
mayUseHeap ()

Description

Determines whether or not this schedulable may use the heap.

Returns

224 RTSJ 2.0 (Final Draft)

AsyncEvent javaz.realtime 8.3

true only when this Schedulable may allocate on the heap and may enter the
Heap.

subsumes(Schedulable)
Signature

public boolean

subsumes (Schedulable other)

Description

Returns
true when and only when this instance of Schedulable is more eligible than other.

Since RTSJ 2.0

run

Signature
public final void
run()

Description

Calls handleAsyncEvent repeatedly until the fire count reaches zero. The method
is only to be used by the infrastructure, and should not be called by the application.
The handleAsyncEvent method should be overridden instead.

The handleAsyncEvent () family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override the handleAsyncEvent () method instead of overwriting this method.

8.3.2.4 AsyncEvent

public class AsyncEvent

Inheritance

java.lang.Object
AsyncBaseEvent
AsyncEvent

Description

An asynchronous event can have a set of handlers associated with it, and when
the event occurs, the fireCount of each handler is incremented, and the handlers
are released (see AsyncEventHandler).

Since RTSJ 2.0 extends AsyncBaseEvent

RTSJ 2.0 (Final Draft) 225

8 Asynchrony

AsyncEvent

8.3.2.4.1 Constructors

AsyncEvent
Signature
public
AsyncEvent ()

Description

Creates a new AsyncEvent object.

8.3.2.4.2 Methods

fire

Signature
public void
fire()

Description

When enabled, release the asynchronous event handlers associated with this
instance of AsyncEvent. When this object is disabled the method does nothing,
i.e., it skips the release. When no handlers are attached, the release is ignored.
This method does not suspend itself and has a runtime complexity of 0(n), where
n is the number of attached handers. For an instance of AsyncEvent that has

more than one instance of AsyncEventHandler,

o when one of these handlers throws an exception, all instances of AsyncEv-
entHandler not affected by the exception must be released normally before

the exception is propagated, and

o when more than one of these handlers throws an exception, the propagation
of MITViolationException has precedence over ArrivalTimeQueueOver-

flowException, which has precedence over all others.

The later case can only occur when more than one of the handlers has a release
parameters instance of type SporadicParameters, since only them can MITVio-
lationException and ArrivalTimeQueueOverflowException be thrown.

Throws

MITViolationException—under the base priority scheduler’s semantics when there
is a handler associated with this event that has its MIT violated by the call
to fire (and it has set the minimum interarrival time violation behavior to
MITViolationExcept). Only the handlers which do not have their MITs violated

are released in this situation.

226 RTSJ 2.0 (Final Draft)

AsyncEventHandler javaz.realtime 8.3

ArrivalTimeQueueOverflowException—when the queue of release information,
arrival time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent, this exception is ignored.

8.3.2.5 AsyncEventHandler

public class AsyncEventHandler

Inheritance

java.lang.Object
AsyncBaseEventHandler
AsyncEventHandler

Description

An asynchronous event handler encapsulates code that is released after an instance
of AsyncEvent to which it is attached occurs.

It is guaranteed that multiple releases of an event handler will be serial-
ized. It is also guaranteed that (unless the handler explicitly chooses oth-
erwise) for each release of the handler, there will be one execution of the
AsyncEventHandler.handleAsyncEvent () method. Control over the number of
calls to AsyncEventHandler.handleAsyncEvent () is given by methods which
manipulate a fireCount. These may be called by the application via sub-classing
and overriding AsyncEventHandler.handleAsyncEvent ().

Instances of AsyncEventHandler with a release parameter of type Sporadic-
Parameters or AperiodicParameters have a list of release times which corre-
spond to the occurrence times of instances of AsyncEvent to which they are
attached. The minimum interarrival time specified in SporadicParameters is
enforced when a release time is added to the list. Unless the handler explicitly
chooses otherwise, there will be one execution of the code in AsyncEventHandler.
handleAsyncEvent () for each entry in the list.

The deadline and the time each release event causes the AEH to become
eligible for execution are properties of the scheduler that controls the AEH. For
the base scheduler, the deadline for each release event is relative to its fire time,
and the release takes place at fire time but execution eligibility may be deferred
when the queue’s MIT violation policy is SAVE.

Handlers may do almost anything a realtime thread can do. They may run for a
long or short time, and they may block. (Note, blocked handlers may hold system
resources.) A handler may not use the RealtimeThread.waitForNextRelease
method.

Normally, handlers are bound to an execution context dynamically when the
instances of AsyncEvents to which they are bound occur. This can introduce a
(small) time penalty. For critical handlers that cannot afford the expense, and
where this penalty is a problem, BoundAsyncEventHandlers can be used.

RTSJ 2.0 (Final Draft) 227

8 Asynchrony AsyncEventHandler

The scheduler for an asynchronous event handler is inherited from the task

that created it. When created from a task that is not an instance of Schedulable,
the scheduler is the current default scheduler.

The semantics for memory areas that were defined for realtime threads apply

in the same way to instances of AsyncEventHandler They may inherit a scope
stack when they are created, and the single parent rule applies to the use of
memory scopes for instances of AsyncEventHandler just as it does in realtime
threads.

Since RTSJ 2.0 extends AsyncBaseEventHandler.

8.3.2.5.1 Constructors

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, ConfigurationParam-
eters, ReleaseRunner, Runnable)

Signature

public

AsyncEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
ReleaseRunner runner,
Runnable logic)

Description

Creates a handler with the given scheduling, release, memory, group, and config-
uration parameters to run the given logic.

Since RTSJ 2.0

Parameters
scheduling—Parameter for scheduling the new handler (and possibly other in-

228

stances of Schedulable). When scheduling is null and the creator is an
instance of Schedulable, SchedulingParameters is a clone of the creator’s
value created in the same memory area as this. When scheduling is null and
the creator is a task that is not an instance of Schedulable, the contents and
type of the new SchedulingParameters object are governed by the associated
scheduler. The Affinity of the newly-created handler will be set as follow:

e When defined, from SchedulingParameters.

o Otherwise, the Affinity will be inherited from the creating task.
In the case where the affinity is not explicitly
set using the constructor or AsyncBaseEventHandler.
setSchedulingParameters(SchedulingParameters), the default affinity

RTSJ 2.0 (Final Draft)

AsyncEventHandler javaz.realtime 8.3

assigned to this Schedulable will not appear in the SchedulingParameters
returned by AsyncBaseEventHandler.getSchedulingParameters().

release—Parameter for scheduling the new handler (and possibly other instances
of Schedulable). When release is null the new AsyncEventHandler will
use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the AsyncEventHandler object.

memory—Parameter for scheduling the new handler (and possibly other instances of
Schedulable). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area—The initial memory area of this handler.
runner—A pool of realtime threads to provide an execution context for this handler.

logic—The Runnable object whose run() method will serve as the logic for the new
AsyncEventHandler. When logic is null, the handleAsyncEvent () method
in the new object will serve as its logic.

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, Runnable)
Signature
public
AsyncEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
Runnable logic)

Description

Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, Runnable) with
arguments (scheduling, release, memory, area, null, null, logic).

Since RTSJ 2.0

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, Runnable)
Signature
public
AsyncEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
Runnable logic)

Description

Calling this constructor is equivalent to calling AsyncEventHand-
ler (SchedulingParameters, ReleaseParameters, MemoryParameters,

RTSJ 2.0 (Final Draft) 229

8 Asynchrony AsyncEventHandler

MemoryArea, ConfigurationParameters, ReleaseRunner, Runnable) with
arguments (scheduling, release, null, null, null, null, logic).

Since RTSJ 2.0

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers)
Signature
public
AsyncEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release)

Description

Calling this constructor is equivalent to calling AsyncEventHand-
ler (SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, Runnable) with
arguments (scheduling, release, null, null, null, null, null)

Since RTSJ 2.0

AsyncEventHandler(Runnable)

Signature
public
AsyncEventHandler (Runnable logic)

Description

Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, Runnable) with
arguments (null, null, null, null, null, null, logic).

AsyncEventHandler
Signature
public
AsyncEventHandler ()

Description

Creates an instance of AsyncEventHandler with default values for all parameters.

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ConfigurationParameters, ReleaseRunner, Runnable)

8.3.2.5.2 Methods

230 RTSJ 2.0 (Final Draft)

AsyncLongEvent javaz.realtime 8.3

handleAsyncEvent
Signature
public void
handleAsyncEvent ()

Description

This method holds the logic which is to be executed when any AsyncEvent with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AEH acts as a source of "reference" for its initial memory area while it is
released.

All throwables from (or propagated through) handleAsyncEvent are caught,
a stack trace is printed and execution continues as if handleAsyncEvent had
returned normally.

release
Signature
public void
release()

Description

Release this handler directly.

8.3.2.6 AsyncLongEvent

public class AsyncLongEvent

Inheritance

java.lang.Object
AsyncBaseEvent
AsyncLongEvent

Description

A new type of event that carries a long as a payload.

See Section AsyncEvent

Since RTSJ 2.0

8.3.2.6.1 Constructors

RTSJ 2.0 (Final Draft) 231

8 Asynchrony AsyncLongEvent

AsyncLongEvent
Signature
public
AsyncLongEvent ()

Description
Creates a new AsyncLongEvent object.

8.3.2.6.2 Methods

fire(long)
Signature
public void
fire(long value)
throws MITViolationException,
EventQueueOverflowException

Description
When enabled, releases the handlers associated with this instance of AsyncLong-
Event with the long passed by fire(long). When no handlers are attached or
this object is disabled the method does nothing, i.e., it skips the release. For an
instance of AsyncEvent that has more than one instance of AsyncEventHandler,
« when one of these handlers throws an exception, all instances of AsyncEv-
entHandler not affected by the exception must be released normally before
the exception is propagated, and
o when more than one of these handlers throws an exception, the propagation
of MITViolationException has precedence over ArrivalTimeQueueOver-
flowException, which has precedence over all others.
The later case can only occur when more than one of the handlers has a release
parameters instance of type SporadicParameters, since only them can MITVio-
lationException and ArrivalTimeQueueOverflowException be thrown.

Parameters
value—The payload passed to the event.
Throws

MITViolationException—under the base priority scheduler’s semantics, when
there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.

EventQueueOverflowException—when the queue of release information, arrival
time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent, this exception is ignored.

232 RTSJ 2.0 (Final Draft)

AsyncLongEventHandler javaz.realtime 8.3

8.3.2.7 AsyncLongEventHandler

public class AsyncLongEventHandler

Inheritance

java.lang.Object
AsyncBaseEventHandler
AsyncLongEventHandler

Description

A version of AsyncBaseEventHandler that carries a long value as payload.

Since RTSJ 2.0

8.3.2.7.1 Constructors

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ConfigurationPa-
rameters, ReleaseRunner, LongConsumer)
Signature
public
AsyncLongEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
ReleaseRunner runner,
LongConsumer logic)
throws StaticIllegalArgumentException

Description

Creates an asynchronous event handler that receives a Long payload with each
fire.

Parameters

scheduling—Parameter for scheduling the new handler (and possibly other in-
stances of Schedulable). When scheduling is null and the creator is an
instance of Schedulable, SchedulingParameters is a clone of the creator’s
value created in the same memory area as this. When scheduling is null and
the creator is a task that is not an instance of Schedulable, the contents and
type of the new SchedulingParameters object are governed by the associated
scheduler.

release—Parameter for scheduling the new handler (and possibly other instances
of Schedulable). When release is null the new AsyncEventHandler will

RTSJ 2.0 (Final Draft) 233

8 Asynchrony AsyncLongEventHandler

use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the AsyncEventHandler object.
memory—Parameter for scheduling the new handler (and possibly other instances of
Schedulable). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.
area—The initial memory area of this handler.
runner—Logic to be executed by handleAsyncEvent
logic—The logic to run for each fire. When logic is null, the han-
dleAsyncEvent () method in the new object will serve as its logic.
Throws
StaticIllegalArgumentException—when the event queue overflow policy is
QueueOverflowPolicy.DISABLE.

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, LongConsumer)
Signature
public
AsyncLongEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
LongConsumer logic)
throws StaticIllegalArgumentException

Description
Calling this constructor is equivalent to calling AsyncLongEventHand-
ler (SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, LongConsumer)
with arguments (scheduling, release, null, null, null, null, logic).

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters)
Signature
public
AsyncLongEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release)

throws StaticIllegalArgumentException

Description

Calling this constructor is equivalent to calling AsyncLongEventHand-
ler (SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, LongConsumer)
with arguments (scheduling, release, null, null, null, null, null)

234 RTSJ 2.0 (Final Draft)

AsyncLongEventHandler javaz.realtime 8.3

AsyncLongEventHandler(LongConsumer)
Signature

public

AsyncLongEventHandler (LongConsumer logic)

Description

Calling this constructor is equivalent to calling AsyncLongEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, LongConsumer)
with arguments (null, null, null, null, null, null, logic).

AsyncLongEventHandler
Signature
public
AsyncLongEventHandler ()

Description

Creates an instance of AsyncLongEventHandler (ALEH) with default values for
all parameters.

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParameters, ReleaseRunner,
LongConsumer)

8.3.2.7.2 Methods

handleAsyncEvent(long)
Signature

public void

handleAsyncEvent (long payload)

Description

This method holds the logic which is to be executed when any AsyncEvent with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AEH acts as a source of "reference" for its initial memory area while it is
released.

All throwables from (or propagated through) handleAsyncEvent are caught,
a stack trace is printed and execution continues as if handleAsyncEvent had
returned normally.

Parameters

RTSJ 2.0 (Final Draft) 235

8 Asynchrony AsyncObjectEvent

payload—It is the long value associated with a fire.

peekPending
Signature
public long
peekPending()
throws StaticIllegalStateException

Description

Determines the next value queued for handling.

Throws
StaticIllegalStateException—when the fire count is zero.

Returns
the long value at the head of the queue of longs to be passed to han-
dleAsyncEvent (long).

release(long)

Signature
public void
release(long payload)

Description
Release this handler directly.
Parameters

payload—The long to be passed to the handler.

8.3.2.8 AsyncObjectEvent

public class AsyncObjectEvent<P>

Inheritance

java.lang.Object
AsyncBaseEvent
AsyncObjectEvent<P>

Description

A new type of event that carries an object as a payload.

See Section AsyncEvent

Since RTSJ 2.0

8.3.2.8.1 Constructors

236 RTSJ 2.0 (Final Draft)

AsyncObjectEvent

javazx.realtime 8.3

AsyncObjectEvent
Signature
public
AsyncObjectEvent ()

Description

Creates a new AsyncObjectEvent instance.

8.3.2.8.2 Methods

fire(P)
Signature
public void
fire(P value)
throws MITViolationException,
EventQueueOverflowException,
IllegalAssignmentError

Description

When enabled, fires this instance of AsyncObjectEvent. The asynchronous event
handlers associated with this event will be released with the object passed by
fire. When no handlers are attached or this object is disabled the method does
nothing, i.e., it skips the release. For an instance of AsyncEvent that has more

than one instance of AsyncEventHandler,

o when one of these handlers throws an exception, all instances of AsyncEv-
entHandler not affected by the exception must be released normally before

the exception is propagated, and

o when more than one of these handlers throws an exception, the propagation
of MITViolationException has precedence over ArrivalTimeQueueOver—

flowException, which has precedence over all others.

The later case can only occur when more than one of the handlers has a release
parameters instance of type SporadicParameters, since only them can MITVio-
lationException and ArrivalTimeQueueOverflowException be thrown.

Parameters
value—The payload passed to the event.
Throws

MITViolationException—under the base priority scheduler’s semantics when there
is a handler associated with this event that has its MIT violated by the call
to fire (and it has set the minimum inter-arrival time violation behavior to
MITViolationExcept). Only the handlers which do not have their MITs violated

are released in this situation.

RTSJ 2.0 (Final Draft)

237

8 Asynchrony AsyncObjectEventHandler

ArrivalTimeQueueOverflowException—when the queue of releases information,
arrival time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent, this exception is ignored.

IllegalAssignmentError—when P is not assignable the event queue of one of the
associated handlers.

8.3.2.9 AsyncObjectEventHandler

public class AsyncObjectEventHandler<P >

Inheritance

java.lang.Object
AsyncBaseEventHandler
AsyncObjectEventHandler<P >

Description
A version of AsyncBaseEventHandler that carries an Object value as payload.

Since RTSJ 2.0

8.3.2.9.1 Constructors

AsyncObjectEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, Configura-
tionParameters, ReleaseRunner, Consumer)
Signature
public
AsyncObjectEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
ReleaseRunner runner,
java.util.function.Consumer<P> logic)
throws StaticIllegalArgumentException

Description
Creates an asynchronous event handler that receives a P payload with each fire.

Parameters
scheduling—Parameter for scheduling the new handler (and possibly other in-
stances of Schedulable). When scheduling is null and the creator is an
instance of Schedulable, SchedulingParameters is a clone of the creator’s

238 RTSJ 2.0 (Final Draft)

AsyncObjectEventHandler javaz.realtime 8.3

value created in the same memory area as this. When scheduling is null and
the creator is a task that is not an instance of Schedulable, the contents and
type of the new SchedulingParameters object are governed by the associated
scheduler.

release—Parameter for scheduling the new handler (and possibly other instances
of Schedulable). When release is null the new AsyncEventHandler will
use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the AsyncEventHandler object.

memory—Parameter for scheduling the new handler (and possibly other instances of
Schedulable). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area—The initial memory area of this handler.

runner—Logic to be executed by handleAsyncEvent

logic—The logic to run for each fire. When logic is null, the handleAsyncEvent
method in the new object will serve as its logic.
Throws
StaticIllegalArgumentException—when the event queue overflow policy is
QueueOverflowPolicy.DISABLE.

AsyncObjectEventHandler(SchedulingParameters, Release-
Parameters, Consumer)
Signature
public
AsyncObjectEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
java.util.function.Consumer<P> logic)
throws StaticIllegalArgumentException

Description

Calling this constructor is equivalent to calling AsyncObjectEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, Consumer) with
arguments (scheduling, release, null, null, null, logic).

AsyncObjectEventHandler(SchedulingParameters, Release-
Parameters)
Signature
public
AsyncObjectEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release)
throws StaticIllegalArgumentException

Description

RTSJ 2.0 (Final Draft) 239

8 Asynchrony AsyncObjectEventHandler

Calling this constructor is equivalent to calling AsyncObjectEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, Consumer) with
arguments (scheduling, release, null, null, null, null, null)

AsyncObjectEventHandler(Consumer)
Signature
public
AsyncObjectEventHandler (java.util.function.Consumer<P> logic)

Description

Calling this constructor is equivalent to calling AsyncObjectEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ConfigurationParameters, ReleaseRunner, Consumer) with
arguments (null, null, null, null, null, null, logic).

Parameters
logic—It is the function to call on the object received.

AsyncObjectEventHandler
Signature
public
AsyncObjectEventHandler ()

Description

Creates an instance of AsyncObjectEventHandler (AOEH) with default values
for all parameters.

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParameters, ReleaseRunner, Con-
sumer)

8.3.2.9.2 Methods

handleAsyncEvent(P)

Signature
public void
handleAsyncEvent (P value)

Description

This method holds the logic which is to be executed when any AsyncEvent with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

240 RTSJ 2.0 (Final Draft)

BoundAsyncEventHandler javaz.realtime 8.3

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AOEH is a source of reference for its initial memory area while this
AOEH is released.

All throwables from (or propagated through) handleAsyncEvent (P) are
caught, a stack trace is printed and execution continues as if han-
dleAsyncEvent (P) had returned normally.

peekPending
Signature
public P
peekPending ()
throws StaticIllegalStateException

Description

Determines the next value queued for handling.

Throws
StaticIllegalStateException—when the fire count is zero.

Returns
the object reference at the head of the queue of object references to be passed to
handleAsyncEvent}.

release(P)

Signature
public void
release(P payload)

Description

Release this handler directly.

Parameters
payload—The Object to be passed to the handler.

8.3.2.10 BoundAsyncEventHandler

public class BoundAsyncEventHandler

Inheritance

java.lang.Object
AsyncBaseEventHandler
AsyncEventHandler
BoundAsyncEventHandler

Interfaces

RTSJ 2.0 (Final Draft) 241

8 Asynchrony BoundAsyncEventHandler

javax.realtime.BoundSchedulable

Description

A bound asynchronous event handler is an instance of AsyncEventHandler that
is permanently bound to a dedicated realtime thread. Bound asynchronous event
handlers are for use in situations where the added timeliness is worth the overhead
of dedicating an individual realtime thread to the handler. Individual server
realtime threads can only be dedicated to a single bound event handler.

8.3.2.10.1 Constructors

BoundAsyncEventHandler(SchedulingParameters, Re-
leaseParameters, MemoryParameters, MemoryArea, Re-
altimeThreadGroup, ConfigurationParameters, Runnable)

Signature

public

BoundAsyncEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
RealtimeThreadGroup group,
ConfigurationParameters config,
Runnable logic)

Description

Creates an instance of BoundAsyncEventHandler (BAEH) with the specified
parameters.

Since RTSJ 2.0
Parameters
scheduling—A SchedulingParameters object which will be associated with the
constructed instance. When null, and the creator is not an instance of
Schedulable, a SchedulingParameters object is created which has the de-
fault SchedulingParameters for the scheduler associated with the current
thread. When null, and the creator is an instance of Schedulable, the
SchedulingParameters are inherited from the current schedulable (a new
SchedulingParameters object is cloned). The Affinity of the newly-created
handler will be set as follows:
e When defined, from SchedulingParameters.
e When the creating task is in the RealtimeThreadGroup in parameters, or

when no group are defined, the Affinity will be inherited from the creating
Thread

242 RTSJ 2.0 (Final Draft)

BoundAsyncEventHandler javaz.realtime 8.3

e Otherwise, the Affinity will be inherited from the RealtimeThreadGroup
in parameters. When it is not set, it will take the affinity of the group of
the creating thread.

In all the cases where the affinity is not,
explicitly set using AsyncBaseEventHandler.
setSchedulingParameters(SchedulingParameters), the default affinity
assigned to this Schedulable will not appear in the SchedulingParameters
returned by AsyncBaseEventHandler.getSchedulingParameters().

release—A ReleaseParameters object which will be associated with the con-

structed instance. When null, this will have default ReleaseParameters for
the BAEH’s scheduler.

memory—A MemoryParameters object which will be associated with the constructed
instance. When null, this will have no MemoryParameters and the handler
can access the heap.

area—The MemoryArea for this. When null, the memory area will be that of the
current thread/schedulable.

group—A RealtimeThreadGroup object which will be associated with the con-
structed instance. When null, this will be associated with the creating
thread’s realtime thread group.

config—The ConfigurationParameters associated with this (and possibly other
instances of Schedulable. When config is null, this BoundAsyncEven-
tHandler will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.

logic—The Runnable object whose run() method is executed by

AsyncEventHandler.handleAsyncEvent (). When null, the default
handleAsyncEvent () method invokes nothing.
Throws

ProcessorAffinityException—when the affinity in SchedulingParameters is
invalid or not a subset of this group’s affinity.

StaticIllegalArgumentException—when config is of type javax.realtime.
memory.ScopedConfigurationParameters and logic, any parameter object,
or this is in heap memory.

IllegalAssignmentError—when the new AsyncEventHandler instance cannot
hold a reference to any value assigned to one of the scheduling, release,
memory, or group parameters, or when those parameters cannot hold a reference
to the new AsyncEventHandler. Also when the new AsyncEventHandler
instance cannot hold a reference to values assigned to area or logic.

BoundAsyncEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, Runnable)
Signature

public
BoundAsyncEventHandler (SchedulingParameters scheduling,

RTSJ 2.0 (Final Draft) 243

8 Asynchrony BoundAsyncEventHandler

ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,

Runnable logic)

Description

Creates an instance of BoundAsyncEventHandler with the specified parameters.
Equivalent to BoundAsyncEventHandler (scheduling, release, memory,
area, null, null, logic)

Since RTSJ 2.0

BoundAsyncEventHandler(SchedulingParameters, Release-
Parameters, Runnable)
Signature
public
BoundAsyncEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
Runnable logic)

Description
Creates an instance of BoundAsyncEventHandler with the specified parameters.
Equivalent to BoundAsyncEventHandler(scheduling, release, null, null, null,
null, logic)

Since RTSJ 2.0

BoundAsyncEventHandler(SchedulingParameters, Release-
Parameters)
Signature
public
BoundAsyncEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release)

Description

Creates an instance of BoundAsyncEventHandler with the specified parameters.
Equivalent to BoundAsyncEventHandler(scheduling, release, null,
null, null, null, null)

Since RTSJ 2.0

BoundAsyncEventHandler(Runnable)

Signature
public
BoundAsyncEventHandler (Runnable logic)

Description

244 RTSJ 2.0 (Final Draft)

BoundAsyncLongEventHandler javaz.realtime 8.3

Creates an instance of BoundAsyncEventHandler with the specified parameters.
Equivalent to BoundAsyncEventHandler (null, null, null, null, null,
null, logic)

Since RTSJ 2.0

BoundAsyncEventHandler
Signature
public
BoundAsyncEventHandler ()

Description

Creates an instance of BoundAsyncEventHandler.
Equivalent to BoundAsyncEventHandler (null, null, null, null, null,
null, null)

8.3.2.11 BoundAsyncLongEventHandler

public class BoundAsyncLongEventHandler

Inheritance

java.lang.Object
AsyncBaseEventHandler
AsyncLongEventHandler
BoundAsyncLongEventHandler

Interfaces
javax.realtime.BoundSchedulable

Description

A bound asynchronous event handler is an instance of AsyncLongEventHandler
that is permanently bound to a dedicated RealtimeThread. Bound asynchronous
long event handlers are for use in situations where the added timeliness is worth
the overhead of dedicating an individual realtime thread to the handler. Individual
server realtime threads can only be dedicated to a single bound event handler.

Since RTSJ 2.0

8.3.2.11.1 Constructors

BoundAsyncLongEventHandler(SchedulingParameters, Re-
leaseParameters, MemoryParameters, MemoryArea, Real-
timeThreadGroup, ConfigurationParameters, LongConsumer)

Signature

RTSJ 2.0 (Final Draft) 245

8 Asynchrony BoundAsyncLongEventHandler

public

BoundAsyncLongEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
RealtimeThreadGroup group,
ConfigurationParameters config,
LongConsumer logic)

Description

Creates an instance of BoundAsyncEventHandler (BAEH) with the specified
parameters.

Parameters

scheduling—A SchedulingParameters object which will be associated with the
constructed instance. When null, and the creator is not an instance of
Schedulable, a SchedulingParameters object is created which has the de-
fault SchedulingParameters for the scheduler associated with the current
thread. When null, and the creator is an instance of Schedulable, the
SchedulingParameters are inherited from the current schedulable (a new
SchedulingParameters object is cloned). The Affinity of the newly-created
handler will be set as follow:

e When defined, from SchedulingParameters.

o When the creating task is in the RealtimeThreadGroup in parameters, or
when no group are defined, the Affinity will be inherited from the creating
Thread

e Otherwise, the Affinity will be inherited from the RealtimeThreadGroup
in parameters. When it is not set, it will take the affinity of the group of
the creating thread.

In all the cases where the affinity is not
explicitly set using AsyncBaseEventHandler.
setSchedulingParameters(SchedulingParameters), the default affinity
assigned to this Schedulable will not appear in the SchedulingParameters
returned by AsyncBaseEventHandler.getSchedulingParameters().

release—A ReleaseParameters object which will be associated with the con-
structed instance. When null, this will have default ReleaseParameters for
the BAEH’s scheduler.

memory—A MemoryParameters object which will be associated with the constructed
instance. When null, this will have no MemoryParameters and the handler
can access the heap.

area—The MemoryArea for this. When null, the memory area will be that of the
current thread/schedulable.

group—A RealtimeThreadGroup object which will be associated with the con-
structed instance. When null, this will be associated with the creating
thread’s realtime thread group.

config—The ConfigurationParameters associated with this, and possibly other

246 RTSJ 2.0 (Final Draft)

BoundAsyncLongEventHandler javaz.realtime 8.3

instances of Schedulable. When config is null, this BoundAsyncEven-
tHandler will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.

logic—The LongConsumer object whose accept() method is executed by
AsyncLongEventHandler.handleAsyncEvent (long). When null, the default
handleAsyncEvent (long) method invokes nothing.
Throws
ProcessorAffinityException—when the Affinity in SchedulingParameters is in-
valid or not a subset of the groups this is associated to.

StaticIllegalArgumentException—when config is of type javax.realtime.
memory.ScopedConfigurationParameters and logic, any parameter object,
or this is in heap memory.

IllegalAssignmentError—when the new AsyncEventHandler instance cannot
hold a reference to any value assigned to one of the scheduling, release,
memory, or group parameters, or when those parameters cannot hold a reference
to the new AsyncEventHandler. Also when the new AsyncEventHandler
instance cannot hold a reference to values assigned to area or logic.

BoundAsyncLongEventHandler(SchedulingParameters, Re-
leaseParameters, LongConsumer)
Signature
public
BoundAsyncLongEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
LongConsumer logic)

Description

Creates an instance of BoundAsyncLongEventHandler. This constructor is equiv-
alent to BoundAsyncLongEventHandler(scheduling, release, null, null,
null, null, logic)

BoundAsyncLongEventHandler(SchedulingParameters, Re-
leaseParameters)
Signature
public
BoundAsyncLongEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release)

Description

Creates an instance of BoundAsyncLongEventHandler. Calling this constructor
is equivalent to calling BoundAsyncLongEventHandler (scheduling, release,
null, null, null, null, null)

RTSJ 2.0 (Final Draft) 247

8 Asynchrony BoundAsyncObjectEventHandler

BoundAsyncLongEventHandler(LongConsumer)
Signature

public

BoundAsyncLongEventHandler (LongConsumer logic)

Description
Creates an instance of BoundAsyncLongEventHandler. Calling this constructor is

equivalent to calling BoundAsyncLongEventHandler (null, null, null, null,
null, null, logic)

BoundAsyncLongEventHandler
Signature
public
BoundAsyncLongEventHandler ()

Description

Creates an instance of BoundAsyncLongEventHandler using default values. Call-
ing this constructor is equivalent to calling BoundAsyncLongEventHandler (null,
null, null, null, null, null, null)

8.3.2.12 BoundAsyncObjectEventHandler

public class BoundAsyncObjectEventHandler<P>

Inheritance

java.lang.Object
AsyncBaseEventHandler
AsyncObjectEventHandler<P >
BoundAsyncObjectEventHandler<P >

Interfaces
javax.realtime.BoundSchedulable

Description

A bound asynchronous event handler is an instance of AsyncObjectEventHandler
that is permanently bound to a dedicated RealtimeThread. Bound asynchronous
object event handlers are for use in situations where the added timeliness is
worth the overhead of dedicating an individual realtime thread to the handler.
Individual server realtime threads can only be dedicated to a single bound event

handler.
Since RTSJ 2.0

8.3.2.12.1 Constructors

248 RTSJ 2.0 (Final Draft)

BoundAsyncObjectEventHandler javaz.realtime 8.3

BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters, MemoryParameters, MemoryArea, Real-
timeThreadGroup, ConfigurationParameters, Consumer)
Signature
public
BoundAsyncObjectEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
MemoryParameters memory,
MemoryArea area,
RealtimeThreadGroup group,
ConfigurationParameters config,
java.util.function.Consumer<P> logic)

Description

Creates an instance of BoundAsyncObjectEventHandler which specifies all pos-
sible parameters. The newly-created handler inherits the affinity of its creator.
The Affinity of the newly-created handler will be set as follow:

o When defined, from SchedulingParameters.

o When the creating task is in the RealtimeThreadGroup in parameters, or
when no group are defined, the Affinity will be inherited from the creating
Thread

o Otherwise, the Affinity will be inherited from the RealtimeThreadGroup in
parameters. When it is not set, it will take the affinity of the group of the
creating thread.

Parameters

scheduling—A SchedulingParameters object which will be associated with the
constructed instance. When null, and the creator is not an instance of
Schedulable, a SchedulingParameters object is created which has the de-
fault SchedulingParameters for the scheduler associated with the current
thread. When null, and the creator is an instance of Schedulable, the
SchedulingParameters are inherited from the current schedulable (a new
SchedulingParameters object is cloned). The Affinity of the newly-created
handler will be set as follow:

o When defined, from SchedulingParameters.

e When the creating task is in the RealtimeThreadGroup in parameters, or
when no group are defined, the Affinity will be inherited from the creating
Thread

e Otherwise, the Affinity will be inherited from the RealtimeThreadGroup
in parameters. When it is not set, it will take the affinity of the group of
the creating thread.

In all the cases where the affinity is not
explicitly set using AsyncBaseEventHandler.
setSchedulingParameters(SchedulingParameters), the default affinity
assigned to this Schedulable will not appear in the SchedulingParameters
returned by AsyncBaseEventHandler.getSchedulingParameters().

RTSJ 2.0 (Final Draft) 249

8 Asynchrony BoundAsyncObjectEventHandler

release—A ReleaseParameters object which will be associated with the con-

structed instance. When null, this will have default ReleaseParameters for
the BAEH’s scheduler.

memory—A MemoryParameters object which will be associated with the constructed
instance. When null, this will have no MemoryParameters and the handler
can access the heap.

area—The MemoryArea for this. When null, the memory area will be that of the
current thread/schedulable.

group—A RealtimeThreadGroup object which will be associated with the con-
structed instance. When null, this will be associated with the creating
thread’s realtime thread group.

config—The ConfigurationParameters associated with this, and possibly other
instances of Schedulable. When config is null, this BoundAsyncEven-
tHandler will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.

logic—The Consumer object whose accept() method is executed by
AsyncObjectEventHandler.handleAsyncEvent. When null, the default han-
dleAsyncEvent method invokes nothing.

Throws

ProcessorAffinityException—when the Affinity in SchedulingParameters is in-
valid or not a subset of the groups this is associated to.

StaticIllegalArgumentException—when config is of type javax.realtime.
memory.ScopedConfigurationParameters and logic, any parameter object,
or this is in heap memory.

IllegalAssignmentError—when the new AsyncEventHandler instance cannot
hold a reference to any value assigned to one of the scheduling, release,
memory, or group parameters, or when those parameters cannot hold a reference
to the new AsyncEventHandler. Also when the new AsyncEventHandler
instance cannot hold a reference to values assigned to area or logic.

BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters, Consumer)

Signature
public
BoundAsyncObjectEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release,
java.util.function.Consumer<P> logic)

Description

Creates an instance of BoundAsyncObjectEventHandler. This constructor is
equivalent to BoundAsyncObjectEventHandler (scheduling, release, null,
null, null, null, logic)

250 RTSJ 2.0 (Final Draft)

FirstInFirstOutReleaseRunner javazx.realtime 8.3

BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters)
Signature
public
BoundAsyncObjectEventHandler (SchedulingParameters scheduling,
ReleaseParameters<?> release)

Description

Creates an instance of BoundAsyncObjectEventHandler. Calling this construc-
tor is equivalent to calling BoundAsyncObjectEventHandler (scheduling, re-
lease, null, null, null, null, null)

BoundAsyncObjectEventHandler(Consumer)
Signature
public
BoundAsyncObjectEventHandler (java.util.function.Consumer<P> logic)

Description

Creates an instance of BoundAsyncObjectEventHandler. Calling this constructor
is equivalent to calling BoundAsyncObjectEventHandler (null, null, null,
null, null, null, logic)

BoundAsyncObjectEventHandler

Signature
public
BoundAsyncObjectEventHandler ()

Description

Creates an instance of BoundAsyncObjectEventHandler using default values.
This constructor is equivalent to BoundAsyncObjectEventHandler (null, null,
null, null, null, null, null)

8.3.2.13 FirstInFirstOutReleaseRunner

public class FirstInFirstOutReleaseRunner

Inheritance

java.lang.Object
ReleaseRunner
FirstInFirstOutReleaseRunner

Description

RTSJ 2.0 (Final Draft) 251

8 Asynchrony FirstInFirstOutReleaseRunner

The default ReleaseRunner that uses a pool of FIFO scheduled realtime threads
to run handlers. This reduces the amount of threads required for handling
events compared with bounding a thread to each handler. It also supports
handlers that suspend themselves, e.g., by calling the Object.wait () method.
The size of the pool of threads is based on the number of handlers, the number
of priorities in use, and the number of cpus available. For systems with many
AsyncBaseEventHandler instances, there can be significantly fewer threads to
run releases of those handlers in the system.

Since RTSJ 2.0

8.3.2.13.1 Constructors

FirstInFirstOutReleaseRunner(ConfigurationParameters, Re-
altimeThreadGroup, IntBinaryOperator)
Signature
public
FirstInFirstOutReleaseRunner (ConfigurationParameters config,
RealtimeThreadGroup group,
IntBinaryOperator sizer)

Description
Create a release runner which maintains a pool of threads to run releases of
AsyncBaseEventHandler instances. The threads in the pool all run in a given
RealtimeThreadGroup instance. The thread pool size is determined by the binary
function sizer. When sizer is null, a reasonable default is provided.

Parameters

config—the ConfigurationParameters object to use for all handler run from this
pool, which means for each thread in the pool.

group—for the pool threads.

sizer—A binary function from the number of handlers and the number of priorities
of those handles to the number of threads in the pool. It may use global
information, such as the number of available CPUs. It may also ignore its
arguments.

FirstInFirstOutReleaseRunner(ConfigurationParameters)
Signature

public

FirstInFirstOutReleaseRunner (ConfigurationParameters config)

Description

Same as FirstInFirstOutReleaseRunner (ConfigurationParameters, Real-
timeThreadGroup, IntBinaryOperator) with arguments {(config, null, null)}.

252 RTSJ 2.0 (Final Draft)

FirstInFirstOutReleaseRunner javazx.realtime 8.3

8.3.2.13.2 Methods

getRealtimeThread Group

Signature
protected javax.realtime.RealtimeThreadGroup
getRealtimeThreadGroup ()

Description

Returns
the RealtimeThreadGroup instance used by all threads used for running releases.

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Returns
those parameters.

release(Proxy)

Signature
protected void
release(ReleaseRunner.Proxy handler)

Description

Parameters
handler—The handler to be released.

attach(Proxy)

Signature
protected void
attach(ReleaseRunner.Proxy handler)
throws StaticIllegalStateException

Description

Attach a handler from this runner, so it will be released. Adjusts the number of
threads for running handlers accordingly.

RTSJ 2.0 (Final Draft) 253

8§ A

synchrony ReleaseRunner

Parameters
handler—to be removed.
Throws

St

de

aticIllegalArgumentException—When handler is null

tach(Proxy)

Signature

protected void
detach(ReleaseRunner.Proxy handler)
throws StaticIllegalStateException

Description

Detach a handler from this runner, so it will no longer be released. Adjusts the
number of threads for running handlers accordingly.

Parameters
handler—to be detached.
Throws

St

8.3

aticIllegalArgumentException—When handler is null

.2.14 ReleaseRunner

public abstract class ReleaseRunner

Inh

eritance

java.lang.Object

ReleaseRunner

Description

Manages a pool of threads to execute asynchronous event handler releases. The
implementer is responsible for maintaining the pool of threads and ensuring they
all have at least the desired ConfigurationParameters, RealtimeThreadGroup,
and Affinity.

The other parameters for instances of Schedulable can either be set for each
release or be configurable for the pool. In the latter case, one should not be able
to associate a handler with the runner that has an incompatible parameter set.
These other parameters are SchedulingParameters, ReleaseParameters, and
MemoryParameters, as well as the MemoryArea in which the release should take
place.

The default release runner, FirstInFirstOutReleaseRunner, sets these other
parameters on the releasing thread at each release. Since there may be a perfor-
mance penalty for doing this, an application can define its own release runners for
commonly occurring cases of these parameters. It is then up to the application
to ensure that handlers are matched to the correct release runner.

Since RTSJ 2.0

254

RTSJ 2.0 (Final Draft)

ReleaseRunner javaz.realtime 8.3

8.3.2.14.1 Constructors

ReleaseRunner(RealtimeThreadGroup)
Signature

protected

ReleaseRunner (RealtimeThreadGroup group)

Description

Enables creating a subclass of this class.

8.3.2.14.2 Methods

getRealtimeThread Group

Signature
protected abstract javax.realtime.RealtimeThreadGroup
getRealtimeThreadGroup ()

Description

Determine the RealtimeThreadGroup instance used.

Returns
the RealtimeThreadGroup instance used by all threads used for running releases.

getConfigurationParameters

Signature
public abstract javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Get the ConfigurationParameters object used for all threads provided by this
release runner.

Returns
those parameters.

release(Proxy)

Signature
protected abstract void
release(ReleaseRunner.Proxy handler)

RTSJ 2.0 (Final Draft) 255

8 Asynchrony

Description

Finds a thread and has it call the Proxy.run() method. Care should be exercised
when implementing this method, since it adds to both the latency and jitter of
releasing events. The caller must guarantee that releases of any given handler
are always executed in order.

This method should only be called from the infrastructure.

Parameters
handler—The handler to be released.

attach(Proxy)
Signature
protected abstract void
attach(ReleaseRunner.Proxy handler)
throws StaticIllegalStateException,
ProcessorAffinityException

Description

Notifies this runner that the handler is now associated with it. Any compatibility
check should be done here.
This method should only be called from the infrastructure.

Parameters
handler—The handler to be attached
Throws
StaticIllegalStateException—when handler is already attached.

ProcessorAffinityException—when handler is has an illegal affinity.

detach(Proxy)

Signature
protected abstract void
detach(ReleaseRunner.Proxy handler)
throws StaticIllegalStateException

Description

Notifies this runner that the handler is no longer associated with it.
This method should only be called from the infrastructure.

Parameters
handler—The handler to be removed
Throws
StaticIllegalStateException—when handler is not attached.

256 RTSJ 2.0 (Final Draft)

Rationale 8.4

8.4 Rationale

The design of the asynchronous event handling facilities was intended to provide the
necessary functionality while allowing efficient implementations and catering for a
variety of realtime applications. In particular, in some realtime systems there may be
a large number of potential events and event handlers (numbering in the thousands
or perhaps even the tens of thousands), although at any given time only a small
number will be used. Thus it would not be appropriate to dedicate a realtime thread
to each event handler. The RTSJ addresses this issue by allowing the programmer
to specify an event handler either as not bound to a specific realtime thread (the
class AsyncBaseEventHandler) or alternatively as bound to a dedicated realtime
thread (a instance of BoundSchedulable). The RTSJ does not define at what point
an unbound event handler is bound to a realtime thread for its execution. Events are
dataless: the fire method does not pass any data to the handler. This was intentional
in the interest of simplicity and efficiency.

RTSJ 2.0 (Final Draft) 257

8 Asynchrony

258 RTSJ 2.0 (Final Draft)

Chapter 9
Time

Realtime systems must be able to handle both very short time durations and very long
ones. They also need to distinguish between relative time—a duration of time—and
absolute time. Simply using a primitive integral value, such as int or long, does not
provide the necessary range. Floating point primitive values, such as float and double,
do not provide the necessary precision. Nor do they provide any type safety. This
specification addresses this by requiring three time classes: HighResolutionTime,
AbsoluteTime, and RelativeTime, where HighResolutionTime is the parent class
of the other two.

Instances of HighResolutionTime may not be created, as the class exists to
provide a common parent type for the other two classes. An instance of AbsoluteTime
encapsulates an absolute time. An instance of RelativeTime encapsulates a point
in time that is relative to some other absolute time value, which can be used to
describe a time duration.

All methods returning a time object come in both allocating and nonallocating
forms. The classes

o enable describing a point in time with up to nanosecond accuracy and precision

(actual accuracy and precision is dependent on the precision of the underlying
system),

« enable the distinction between absolute points in time, and times relative to

some starting point or a time duration, and

o provide simple arithmetic operations for using them.

All time handling is based on these classes.

9.1 Definitions

Time Object — An instance of AbsoluteTime or RelativeTime. A time object is
always associated with some Chronograph. By default, it is associated with
the realtime clock.

Universal epoch — The time at which the universal clock began ticking, defined
by fiat as January 1, 1970 00:00:00 UTC.

Epoch — The date and time relative to which times on a RTSJ Chronograph c are
determined. The epoch for a chronograph is defined in terms of the Universal
epoch, and is represented as the time elapsed on the Universal clock since the

259

9 Time

Universal epoch at the time that ¢ would have returned a time stamp of 0 ms
and 0 ns.

Time Value Representation — A compound format composed of 64 bits of mil-
lisecond timing, and 32 bits of nanoseconds within a millisecond. The mil-
lisecond constituent uses the 64 bits of a Java long while the nanosecond
constituent uses the 32 bits of a Java int.

Normalized (Canonical) Time Value — Unique values for the millisecond and
nanosecond components of a point in time, including the case of 0 milliseconds
or 0 nanoseconds, and a negative time value, according to the following four
constraints:

1. when both millisecond and nanosecond components are nonzero, they
have the same sign;
2. the algebraic time values of the time object is the algebraic sum of the
two components;
3. the millisecond component represents the algebraic number of milliseconds
in the time object, within a range of [—2%3 253 — 1]; and
4. the nanosecond component represents the algebraic number of nanoseconds
within a millisecond in the time object, that is [—10% + 1,106 — 1].
Instances of HighResolutionTime classes always hold a normalized form of
a time value. Values that cannot be normalized are not valid; for example,
(MAX_LONG milliseconds, MAX_INT nanoseconds) cannot be normalized and is
an illegal value.
The following table has examples of normalized representations.

Table 9.1: Examples of Normalized Times

time in ns | millis nanos
2000000 2 0
1999999 1] 999999
1000001 1 1

1 0 1

0 0 0

-1 0 -1
-999999 0 | -999999
-1000000 -1 0
-1000001 -1 -1

9.2 Semantics

The points below define the general semantics of the time classes. Semantics specific
to particular classes, constructors, methods, and fields are in the class description
and the constructor, method, and field detail sections.
1. All time objects must maintain nanosecond precision and report their values in
terms of millisecond and nanosecond constituents.

260 RTSJ 2.0 (Final Draft)

Semantics 9.2

2. Time objects can be constructed from other time objects, from millisecond /-
nanosecond values, from a java.util.Date, or obtained as a result of invoca-
tions of methods on instances of the Chronograph interface.

3. Time objects maintain and report time values in normalized form, but the
normalized form is not required for input parameter values. This enables
computation to be performed individually with the constituent time parts,
using the full signed range and restrictions of the underlying type.

(a) Normalization is accomplished upon method invocation by methods that
accept a time object represented with individual component parts, and
executed as if the following hold.

i. The nanosecond parameter value, which may be negative, is alge-
braically added to the scaled millisecond parameter value. The sign
of the result provides the sign for any nonzero resulting component.

ii. The absolute of the result is then partitioned, giving the number
of integral milliseconds for the millisecond component, while the
remaining fractional part provides the number of nanoseconds for the
nanosecond component.

iii. The resulting components are then represented, and reported when
necessary, with the above computed sign.

(b) Normalization is also performed on the result of operations by methods
that perform time object addition and subtraction. Operations are exe-
cuted using the appropriate arithmetic precision. If the final result of an
operation can be represented in normalized form, then the operation must
not throw arithmetic exceptions while producing intermediate results.

(¢) The results of time objects operations and the normalization of results
of operations performed with millis and nanos, individually as Java long
and Java int types respectively, are not always equivalent. This is due
to the possibility of overflow for nanos values outside of the normalized
nanosecond range, that is [—10% + 1,10% — 1], when performing operations
as int types, while the same values could be handled with no overflow in
time object operations.

(d) When invoking setter methods that take as a parameter only one of the
two time value components, the other component has implicitly the value
of 0.

4. Although logically a negative time may represent time before the epoch or
a negative time interval involved in time operations, an Exception may be
thrown if a negative absolute time or a negative time interval is given as a
parameter to methods. In general, the time values accepted by a method may
be a subset of the full time values range, and depend on the method.

5. A time object is always associated with a Chronograph. By default it is
associated with the realtime clock. Chronographs are involved both in the
setting as well as the usage of time objects, for example in comparisons.

6. Methods are provided to facilitate the handling of time objects generically via
the HighResolutionTime class. These methods enable converting, according
to a Chronograph, between AbsoluteTime objects and RelativeTime objects.
These methods also enable changing the Chronograph association of a time

RTSJ 2.0 (Final Draft) 261

9 Time

object. Note that the conversions depend on the time at which they are
performed. The semantics of these operations are listed in the following table:

Table 9.2: Semantics of Time Conversion

Chronograph association & conversion | returned/updated object
this has chronograph_a & ms,ns
an_absolute.absolute(chronograph_a) chronograph_a

ms,ns
an_absolute.absolute(chronograph_b) chronograph_b

ms,ns
an_absolute.absolute(null) realtime_clock

ms,ns
an_absolute.relative(chronograph_a) chronograph_a

chronograph_a.getTime() .subtract (ms,ns)
an_absolute.relative(chronograph_b) chronograph_b

chronograph_b.getTime () .subtract (ms,ns)
an_absolute.relative(null) realtime_clock

realtime_clock.getTime() .subtract(ms,ns)
a_relative.relative(chronograph_a) chronograph_a

ms,ns
a_relative.relative(chronograph_b) chronograph_b

ms,ns
a_relative.relative(null) realtime_clock

ms,ns
a_relative.absolute(chronograph_a) chronograph_a

chronograph_a.getTime() .add(ms,ns)
a_relative.absolute(clock_b) chronograph_b

chronograph_b.getTime() .add(ms,ns)
a_relative.absolute(null) realtime_clock

realtime_clock.getTime() .add(ms,ns)

7. Time objects must implement the Comparable interface.

262 RTSJ 2.0 (Final Draft)

AbsoluteTime javazx.realtime 9.3

9.3 javax.realtime

9.3.1 Classes
9.3.1.1 AbsoluteTime

public class AbsoluteTime

Inheritance

java.lang.Object
HighResolutionTime<AbsoluteTime>
AbsoluteTime

Description

An object that represents a specific point in time given by milliseconds plus
nanoseconds past some point in time fixed by its Chronograph. For the universal
clock, the fixed point is the Epoch (January 1, 1970, 00:00:00 GMT). The correct-
ness of the Epoch as a time base depends on the realtime clock synchronization
with an external world time reference. This representation was designed to be
compatible with the standard Java representation of an absolute time in the
java.util.Date class.

A time object in normalized form represents negative time when both compo-
nents are nonzero and negative, or one is nonzero and negative and the other is
zero. For add and subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.1.1 Constructors

AbsoluteTime(long, int, Chronograph)
Signature
public
AbsoluteTime(long millis,
int nanos,
Chronograph chronograph)
throws StaticIllegalArgumentException

Description

Constructs an AbsoluteTime object with time millisecond and nanosecond com-
ponents past the epoch for Chronograph.

The value of the AbsoluteTime instance is based on the parameter millis
plus the parameter nanos. The construction is subject to millis and nanos
parameters normalization. When, after normalization, the time object is neg-
ative, the time represented by this is time before this chronograph’s epoch.

RTSJ 2.0 (Final Draft) 263

9 Time AbsoluteTime

The chronograph association is made with the Chronograph parameter. When
Chronograph is null the association is made with the default realtime clock.

Note that the start of a chronograph’s epoch is an attribute of the chronograph.
It is defined as the Epoch (00:00:00 GMT on Jan 1, 1970) for the calendar clock,
but other classes of chronograph may define other epochs.

Since RTSJ 2.0
Parameters
millis—The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.

nanos— T'he desired value for the nanosecond component of this. The actual value
is the result of parameter normalization.

chronograph—Provides the time reference for the newly constructed object. The
realtime clock is used when this argument is null.
Throws
StaticIllegalArgumentException—when there is an overflow in the millisecond
component when normalizing.

AbsoluteTime(long, int)
Signature
public
AbsoluteTime(long millis,
int nanos)
throws StaticIllegalArgumentException

Description

Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(millis, nanos, null)

Parameters
millis—The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.

nanos— The desired value for the nanosecond component of this. The actual value
is the result of parameter normalization.
Throws
StaticIllegalArgumentException—when there is an overflow in the millisecond
component when normalizing.

AbsoluteTime(Date, Chronograph)
Signature
public
AbsoluteTime(Date date,
Chronograph chronograph)
throws StaticIllegalArgumentException

264 RTSJ 2.0 (Final Draft)

AbsoluteTime javazx.realtime 9.3

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(date.getTime(), O, chronograph).

Warning: While the date is used to set the milliseconds component of the new
AbsoluteTime object (with nanoseconds component set to 0), the new object
represents the date only when the Chronograph parameter has an epoch equal
to Epoch.

The time reference is given by the Chronograph parameter. When Chrono-
graph is null the association is made with the default realtime clock.

Since RTSJ 2.0
Parameters
date—The java.util.Date representation of the time past the epoch.

chronograph—Provides the time reference for the newly constructed object.
Throws
StaticIllegalArgumentException—when the date parameter is null.

AbsoluteTime(Date)

Signature
public
AbsoluteTime(Date date)
throws StaticIllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(date.getTime(), 0, null).

Parameters

date—The java.util.Date representation of the time past the epoch.
Throws

StaticIllegalArgumentException—when the date parameter is null.

AbsoluteTime(AbsoluteTime)

Signature
public
AbsoluteTime (AbsoluteTime time)
throws StaticIllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argu-
ment list (time.getMilliseconds(), time.getNanoseconds(), time.
getChronograph()).

Parameters

time—The AbsoluteTime object which is the source for the copy.
Throws
StaticIllegalArgumentException—when the time parameter is null.

RTSJ 2.0 (Final Draft) 265

9 Time AbsoluteTime

AbsoluteTime(Chronograph)
Signature

public

AbsoluteTime (Chronograph chronograph)

Description

Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(0, 0, chronograph).

Since RTSJ 2.0
Parameters
chronograph—Provides the time reference for the newly constructed object.

AbsoluteTime
Signature
public
AbsoluteTime ()

Description

Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(0, 0, null).

AbsoluteTime(AbsoluteTime, Chronograph)
Signature
public
AbsoluteTime (AbsoluteTime time,
Chronograph chronograph)
throws StaticIllegalArgumentException

Description

Equivalent to AbsoluteTime(long, int, Chronograph) with arguments time.
getMilliseconds(), time.getNanoseconds(), chronograph().

Since RTSJ 2.0
Parameters
time—The AbsoluteTime object which is the source for the copy.
chronograph—The chronograph providing the association for the newly constructed
object.
Throws
StaticIllegalArgumentException—when the time parameter is null.

9.3.1.1.2 Methods

266 RTSJ 2.0 (Final Draft)

AbsoluteTime javazx.realtime 9.3

absolute(Chronograph)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description

Creates a copy of this modified when necessary to have the specified chronograph
association. A new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.
No conversion into AbsoluteTime is needed in this case. The result is associated
with the Chronograph passed as a parameter. When Chronograph is null, the
association is made with the default realtime clock.

Parameters
chronograph—It is used only as the new time reference associated with the result,
since no conversion is needed.
Returns
The copy of this in a newly allocated AbsoluteTime object, associated with the
Chronograph parameter.

Since RTSJ 2.0

absolute(Chronograph, AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,
AbsoluteTime dest)

Description

Copies this into dest, when necessary modified to have the specified chronograph
association. A new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.
No conversion into AbsoluteTime is needed in this case. The result is associated
with the Chronograph passed as a parameter. When Chronograph is null, the
association is made with the default realtime clock.

Parameters
chronograph—It is used only as the new time reference associated with the result,
since no conversion is needed.
dest—the instance to fill.
Returns
The copy of this in a newly allocated AbsoluteTime object, associated with the
Chronograph parameter.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 267

9 Time AbsoluteTime

relative(Chronograph)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description

Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time. The calculation is the current time indicated
by the given instance of Chronograph subtracted from the time given by this.
When Chronograph is null, the default realtime clock is assumed. A destination
object is allocated to return the result. The time reference of the result is given
by the Chronograph passed as a parameter.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into
relative time, and the new chronograph association for the result.
Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
the RelativeTime conversion in a newly allocated object, associated with the
Chronograph parameter.

Since RTSJ 2.0

relative(Chronograph, RelativeTime)
Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph,
RelativeTime dest)

Description

Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time. The calculation is the current time indicated
by the given instance of Chronograph subtracted from the time given by this.
When Chronograph is null, the default realtime clock is assumed. When dest is
not null, the result is placed in it and returned. Otherwise, a new object is allo-
cated for the result. The time reference of the result is given by the Chronograph
passed as a parameter.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into
relative time, and the new chronograph association for the result.
dest—When dest is not null, the result is placed in it and returned.
Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns

268 RTSJ 2.0 (Final Draft)

AbsoluteTime javazx.realtime 9.3

the RelativeTime conversion in dest when dest is not null, otherwise the result
is returned in a newly allocated object, associated with the Chronograph
parameter.

add(long, int)
Signature
public javax.realtime.AbsoluteTime
add(long millis,
int nanos)
throws ArithmeticException

Description

Creates a new object representing the result of adding millis and nanos to
the values from this and normalizing the result. The result will have the same
chronograph association as this.

Parameters
millis—The number of milliseconds to be added to this.

nanos— The number of nanoseconds to be added to this.
Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
a new AbsoluteTime object whose time is the normalization of this plus millis
and nanos.

add(long, int, AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
add(long millis,
int nanos,
AbsoluteTime dest)
throws ArithmeticException

Description

Returns an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result. When dest is not null, the
result is placed in it and returned. Otherwise, a new object is allocated for the
result. The result will have the same chronograph association as this, and the
chronograph association with dest is ignored.

Parameters
millis—The number of milliseconds to be added to this.

nanos—The number of nanoseconds to be added to this.

dest—When dest is not null, the result is placed in it and returned.
Throws

RTSJ 2.0 (Final Draft) 269

9 Time AbsoluteTime

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus millis and nanos in dest when dest
is not null, otherwise the result is returned in a newly allocated object.

add(RelativeTime)

Signature
public javax.realtime.AbsoluteTime
add(RelativeTime time)
throws ArithmeticException,
StaticIllegalArgumentException

Description

Creates a new instance of AbsoluteTime representing the result of adding time
to the value of this and normalizing the result. The Chronograph associated
with this and the Chronograph associated with the time parameter must be
the same, and such association is used for the result.

Parameters
time—The time to add to this.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new AbsoluteTime object whose time is the normalization of this plus the
parameter time.

add(RelativeTime, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
add(RelativeTime time,
AbsoluteTime dest)
throws ArithmeticException,
StaticIllegalArgumentException

Description

Returns an object containing the value resulting from adding time to the value
of this and normalizing the result. When dest is not null, the result is placed
in it and returned. Otherwise, a new object is allocated for the result. The
Chronograph associated with this and the Chronograph associated with the
time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

270 RTSJ 2.0 (Final Draft)

AbsoluteTime javazx.realtime 9.3

Parameters
time—The time to add to this.

dest—When dest is not null, the result is placed in it and returned.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus the RelativeTime parameter time
in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

getDate
Signature
public java.util.Date
getDate ()
throws StaticUnsupportedOperationException

Description

Converts the time given by this to a Date format. Note that Date represents
time as milliseconds so the nanoseconds of this will be lost.

Throws
StaticUnsupportedOperationException—when the Chronograph associated
with this does not have the concept of date.

Returns
a newly allocated Date object with a value of the time past the Epoch represented
by this.

set(Date)

Signature
public javax.realtime.AbsoluteTime
set(Date date)
throws StaticIllegalArgumentException

Description

Changes the time represented by this to that given by the parameter. Note that
Date represents time as milliseconds so the nanoseconds of this will be set to 0.
The chronograph association is implicitly made with the default realtime clock.

Parameters
date—A reference to a Date which will become the time represented by this after
the completion of this method.
Throws

RTSJ 2.0 (Final Draft) 271

9 Time AbsoluteTime

StaticIllegalArgumentException—when the parameter date is null.

Returns
this

Since RTSJ 2.0 returns itself

subtract(AbsoluteTime)
Signature
public javax.realtime.RelativeTime
subtract (AbsoluteTime time)
throws StaticIllegalArgumentException,
ArithmeticException

Description

Creates a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result. The Chronograph
associated with this and the Chronograph associated with the time parameter
must be the same, and such association is used for the result.

Parameters
time—The time to subtract from this.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new RelativeTime object whose time is the normalization of this minus the
AbsoluteTime parameter time.

subtract(AbsoluteTime, RelativeTime)
Signature
public javax.realtime.RelativeTime
subtract (AbsoluteTime time,
RelativeTime dest)
throws StaticIllegalArgumentException,
ArithmeticException

Description

Returns an object containing the value resulting from subtracting time from the
value of this and normalizing the result. When dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The Chronograph associated with this and the Chronograph associated with
the time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

272 RTSJ 2.0 (Final Draft)

AbsoluteTime javazx.realtime 9.3

Parameters
time—The time to subtract from this.

dest—When dest is not null, the result is placed in it and returned.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the AbsoluteTime parameter time
in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

subtract(RelativeTime)

Signature
public javax.realtime.AbsoluteTime
subtract (RelativeTime time)
throws StaticIllegalArgumentException,
ArithmeticException

Description

Creates a new instance of AbsoluteTime representing the result of subtracting
time from the value of this and normalizing the result. The Chronograph
associated with this and the Chronograph associated with the time parameter
must be the same, and such association is used for the result.

Parameters
time—The time to subtract from this.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new AbsoluteTime object whose time is the normalization of this minus the
parameter time.

subtract(RelativeTime, AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
subtract (RelativeTime time,
AbsoluteTime dest)

RTSJ 2.0 (Final Draft) 273

9 Time HighResolutionTime

throws StaticIllegalArgumentException,
ArithmeticException

Description

Returns an object containing the value resulting from subtracting time from the
value of this and normalizing the result. When dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The Chronograph associated with this and the Chronograph associated with
the time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to subtract from this.

dest—When dest is not null, the result is placed there and returned.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the RelativeTime parameter time
in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

toString

Signature
public java.lang.String
toString ()

Description

Creates a printable string of the time given by this.
The string shall be a decimal representation of the milliseconds and nanosecond
values; formatted as follows "(2251 ms, 750000 ns)"

Returns
a String object converted from the time given by this.

9.3.1.2 HighResolutionTime

public abstract class HighResolutionTime<T extends HighResolutionTime<T>>

Inheritance

java.lang.Object
HighResolutionTime<T extends HighResolutionTime<T>>

274 RTSJ 2.0 (Final Draft)

HighResolutionTime javazx.realtime 9.3

Interfaces
Comparable
Cloneable

Description

Class HighResolutionTime is the base class for AbsoluteTime and Relative-
Time. It can be used to express time with nanosecond resolution. This class is
never used directly; it is abstract and has no public constructor. Instead, one
of its subclasses AbsoluteTime or RelativeTime should be used. When an API
is defined that has a HighResolutionTime as a parameter, it can take either an
absolute or a relative time and will do something appropriate.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.2.1 Methods

waitForObject(Object, HighResolutionTime)
Signature
public static boolean
waitForObject(Object target,
HighResolutionTime<?> time)
throws InterruptedException,
IllegalMonitorStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException

Description

Behaves like target.wait() but with the enhancement that it waits with a
precision of HighResolutionTime and returns true when the associated notify
was received, false when timeout occured. As for target.wait(), there is the
possibility of spurious wakeup behavior.

The wait time may be relative or absolute, and it is controlled by the clock
associated with it. When the wait time is relative, then the calling thread is
blocked waiting on target for the amount of time given by time, and measured
by the associated clock. When the wait time is absolute, then the calling thread
is blocked waiting on target until the indicated time value is reached by the
associated clock.

Parameters
target—The object for which to wait. The current thread must have a lock on the
object.
time—The time for which to wait. When it is RelativeTime(0,0) then wait
indefinitely. When it is null then wait indefinitely.
Throws

RTSJ 2.0 (Final Draft) 275

9 Time HighResolutionTime

InterruptedException—when this schedulable is interrupted by RealtimeThread.
interrupt or AsynchronouslyInterruptedException.fire while it is wait-
ing.

StaticIllegalArgumentException—when time represents a relative time less
than zero.

IllegalMonitorStateException—when target is not locked by the caller.

StaticUnsupportedOperationException—when the wait operation is not sup-
ported using the clock associated with time.

Returns
true when the notify was received before the timeout; false otherwise.

Since RTSJ 2.0 updated to add a return value.

equals(T)
Signature
public boolean
equals(T time)

Description

Proves if the argument time has the same type and values as this.
Equality includes Chronograph association.

Parameters
time—Value to be compared with this.
Returns
true when the parameter time is of the same type and has the same values as
this, as well as the same Chronograph association.

Since RTSJ 2.0

getClock

Signature
public javax.realtime.Clock
getClock()
throws StaticUnsupportedOperationException

Description

Gets the reference to the clock associated with this.

Throws
StaticUnsupportedOperationException—when the time is based on a Chrono-
graph that is not a Clock.

Returns
a reference to the clock associated with this.

Since RTSJ 1.0.1

276 RTSJ 2.0 (Final Draft)

HighResolutionTime javazx.realtime 9.3

getChronograph

Signature
public final javax.realtime.Chronograph
getChronograph ()

Description

Gets a reference to the Chronograph associated with this.

Returns
a reference to the Chronograph associated with this.

Since RTSJ 2.0

getMilliseconds
Signature
public final long
getMilliseconds()

Description

Gets the milliseconds component of this.

Returns
the milliseconds component of the time represented by this.

getNanoseconds
Signature
public final int
getNanoseconds ()

Description

Gets the nanoseconds component of this.

Returns
the nanoseconds component of the time represented by this.

set(T)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set (T time)

Description

Changes the value represented by this to that of the given time. The Chrono-
graph associated with this is set to be the Chronograph associated with the
time parameter.

Parameters
time—The new value for this.

RTSJ 2.0 (Final Draft) 277

9 Time HighResolutionTime

Throws
StaticIllegalArgumentException—when the parameter time is null.

ClassCastException—when the type of this and the type of the parameter time
are not the same.

Returns
this

Since RTSJ 1.0.1 The description of the method in 1.0 was erroneous.
Since RTSJ 2.0 returns itself

set(Chronograph, long, int)
Signature
public T extends javax.realtime.HighResolutionTime<T>
set (Chronograph chronograph,
long millis,
int nanos)
throws StaticIllegalArgumentException

Description

Sets the all components of this. The setting is subject to parameter normalization.
When after normalization the time is negative, the time represented by this is
set to a negative value, but note, negative times are not supported everywhere.
For instance, a negative relative time is an invalid value for a periodic thread’s
period.

Parameters
chronograph—The time reference for the other components of this set during the
call call.

millis—The desired value for the millisecond component of this at the completion
of the call. The actual value is the result of parameter normalization.

nanos— T'he desired value for the nanosecond component of this at the completion
of the call. The actual value is the result of parameter normalization.
Throws
StaticIllegalArgumentException—when there is an overflow in the millisecond
component while normalizing.

Returns
this

Since RTSJ 2.0 returns itself

set(long, int)
Signature
public T extends javax.realtime.HighResolutionTime<T>
set(long millis,
int nanos)

278 RTSJ 2.0 (Final Draft)

HighResolutionTime javazx.realtime 9.3

throws StaticIllegalArgumentException

Description
Sets the millisecond and nanosecond components of this. The setting is subject
to parameter normalization. When after normalization the time is negative then
the time represented by this is set to a negative value, but note that negative
times are not supported everywhere. For instance, a negative relative time is an
invalid value for a periodic thread’s period.

Parameters
millis—The desired value for the millisecond component of this at the completion
of the call. The actual value is the result of parameter normalization.

nanos— T'he desired value for the nanosecond component of this at the completion
of the call. The actual value is the result of parameter normalization.
Throws
StaticIllegalArgumentException—when there is an overflow in the millisecond
component while normalizing.

Returns
this

Since RTSJ 2.0 returns itself

set(long)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set(long millis)

Description

Sets the millisecond component of this to the given argument, and the nanosec-
ond component of this to 0. This method is equivalent to set(millis, 0).

Parameters
millis—This value shall be the value of the millisecond component of this at the
completion of the call.
Returns
this

Since RTSJ 2.0 returns itself

hashCode

Signature
public int
hashCode ()

Description
Returns a hash code for this object in accordance with the general contract of
Object.hashCode. Time objects that are equal, as defined by equals, have the
same hash code.

RTSJ 2.0 (Final Draft) 279

9 Time HighResolutionTime

Returns
the hashcode value for this instance.

clone

Signature
public java.lang.(Object
clone()

Description

Returns a clone of this. This method should behave effectively as when it
constructed a new object with the visible values of this. The new object is
created in the current allocation context.

Since RTSJ 1.0.1

compareTo(T)
Signature
public int
compareTo (T time)

Description

Compares this HighResolutionTime with the specified HighResolutionTime
time.

Parameters
time—To be compared with the time of this.
Throws
ClassCastException—when the time parameter is not of the same class as this.
StaticIllegalArgumentException—when the time parameter is not associated
with the same chronograph as this, or when the time parameter is null.

Returns
a negative integer, zero, or a positive integer as this object is less than, equal to, or
greater than time.

Since RTSJ 2.0

equals(Object)
Signature
public boolean
equals(Object object)

Description

Determined whether or not the argument object has the same type and values
as this.
Equality includes Chronograph association.

280 RTSJ 2.0 (Final Draft)

HighResolutionTime javazx.realtime 9.3

Parameters
object—Value to be compared with this.
Returns

true when the parameter object is of the same type and has the same values as
this, as well as the same Chronograph association.

absolute(Chronograph, AbsoluteTime)
Signature
public abstract javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,
AbsoluteTime dest)

Description
Converts the time of this to an absolute time, using the given instance of
Chronograph to determine the current time when necessary. When Chronograph
is null the default realtime clock is assumed. When dest is not null, the result is
placed in it and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into
absolute time, and the new chronograph association for the result.

dest—When dest is not null, the result is placed in it and returned.
Returns
the AbsoluteTime conversion in dest when dest is not null, otherwise the result
is returned in a newly allocated object. It is associated with the Chronograph
parameter.

absolute(Chronograph)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description
Converts the time of this to an absolute time, using the given instance of
Chronograph to determine the current time when necessary. When Chronograph
is null the realtime clock is assumed.
A destination object is allocated to return the result. The chronograph
association of the result is the Chronograph passed as a parameter. See the
subclass comments for more specific information.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into
absolute time, and the new chronograph association for the result.
Returns

RTSJ 2.0 (Final Draft) 281

9 Time HighResolutionTime

the AbsoluteTime conversion in a newly allocated object, associated with the
Chronograph parameter.

relative(Chronograph, RelativeTime)
Signature
public abstract javax.realtime.RelativeTime
relative(Chronograph chronograph,
RelativeTime dest)

Description

Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time when necessary. When Chronograph is
null the realtime clock is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into
relative time, and the new chronograph association for the result.

dest—When dest is not null, the result is placed in it and returned.
Returns
the RelativeTime conversion in dest when dest is not null, otherwise the result
is returned in a newly allocated object.

Since RTSJ 2.0

relative(Chronograph)

Signature
public abstract javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description

Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time when necessary. When Chronograph is null
the realtime clock is assumed. A destination object is allocated to return the
result. The chronograph association of the result is the Chronograph passed as a
parameter. See the subclass comments for more specific information.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into
relative time, and the new chronograph association for the result.
Returns
the RelativeTime conversion in a newly allocated object, associated with the
Chronograph parameter.

Since RTSJ 2.0

282 RTSJ 2.0 (Final Draft)

RelativeTime javazx.realtime 9.3

9.3.1.3 RelativeTime

public class RelativeTime

Inheritance

java.lang.Object
HighResolutionTime<RelativeTime>
RelativeTime

Description

An object that represents a time interval milliseconds/10*® 4+ nanoseconds/10?
seconds long. It generally is used to represent a time relative to now.

The time interval is kept in normalized form. The range goes from [(-
25%) milliseconds + (-10%+1) nanoseconds] to [(253-1) milliseconds + (108-1)
nanoseconds] .

A negative interval relative to now represents time in the past. For add and
subtract, negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.3.1 Constructors

RelativeTime(long, int, Chronograph)
Signature
public
RelativeTime(long millis,
int nanos,
Chronograph chronograph)
throws StaticIllegalArgumentException

Description

Constructs a RelativeTime object representing an interval based on the parame-
ter millis plus the parameter nanos. The construction is subject to millis and
nanos parameter normalization. When there is an overflow in the millisecond
component when normalizing then an StaticIllegalArgumentException will
be thrown.

The chronograph association is made with the chronograph parameter. When
chronograph is null the association is made with the default realtime clock.

Since RTSJ 2.0
Parameters
millis—The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.

RTSJ 2.0 (Final Draft) 283

9 Time RelativeTime

nanos— The desired value for the nanosecond component of this. The actual value
is the result of parameter normalization.
chronograph—The time reference of the newly constructed object. Defaults to the
realtime clock when null.
Throws
StaticIllegalArgumentException—when there is an overflow in the millisecond
component when normalizing.

RelativeTime(long, int)
Signature
public
RelativeTime(long millis,
int nanos)
throws StaticIllegalArgumentException

Description

Equivalent to RelativeTime(long, int, Chronograph) with argument list
(millis, nanos, null).

Parameters
millis—The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.
nanos— T'he desired value for the nanosecond component of this. The actual value
is the result of parameter normalization.
Throws
StaticIllegalArgumentException—when there is an overflow in the millisecond
component when normalizing.

RelativeTime(RelativeTime)

Signature
public
RelativeTime (RelativeTime time)

Description

Equivalent to RelativeTime(long, int, Chronograph) with argu-

ment list (time.getMilliseconds(), time.getNanoseconds(), time.
getChronograph()).
Parameters

time—The RelativeTime object which is the source for the copy.

RelativeTime(RelativeTime, Chronograph)

Signature

284 RTSJ 2.0 (Final Draft)

RelativeTime javazx.realtime 9.3

public
RelativeTime(RelativeTime time,
Chronograph chronograph)

Description
Equivalent to RelativeTime(long, int, Chronograph) with argu-
ment list (time.getMilliseconds(), time.getNanoseconds(), time.
getChronograph()).

Parameters

time—The RelativeTime object which is the source for the copy.

RelativeTime(Chronograph)
Signature

public

RelativeTime (Chronograph chronograph)

Description

Equivalent to RelativeTime(long, int, Chronograph) with argument list (O,
0, chronograph).

Since RTSJ 2.0
Parameters
chronograph—The time reference for the newly constructed object.

RelativeTime
Signature
public
RelativeTime ()

Description

Equivalent to RelativeTime(long, int, Chronograph) with argument list (O,
0, null).

9.3.1.3.2 Methods

absolute(Chronograph)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description

RTSJ 2.0 (Final Draft) 285

9 Time RelativeTime

Since RTSJ 2.0
See Section HighResolutionTime.absolute(Chronograph)

absolute(Chronograph, AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,
AbsoluteTime dest)

Description

Since RTSJ 2.0
See Section HighResolutionTime.absolute(Chronograph, AbsoluteTime)

relative(Chronograph)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description

Since RTSJ 2.0
See Section HighResolutionTime.relative(Chronograph)

relative(Chronograph, RelativeTime)
Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph,
RelativeTime dest)

Description

Since RTSJ 2.0

See Section HighResolutionTime.relative(Chronograph, RelativeTime)

add(long, int)
Signature
public javax.realtime.RelativeTime
add(long millis,
int nanos)
throws ArithmeticException

Description

286 RTSJ 2.0 (Final Draft)

RelativeTime javazx.realtime 9.3

Creates a new object representing the result of adding millis and nanos to
the values from this and normalizing the result. The result will have the same
chronograph association as this. An ArithmeticException is when the result
does not fit in the normalized format.

Parameters
millis—The number of milliseconds to be added to this.

nanos— The number of nanoseconds to be added to this.
Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
a new RelativeTime object whose time is the normalization of this plus millis
and nanos.

add(long, int, RelativeTime)
Signature
public javax.realtime.RelativeTime
add(long millis,
int nanos,
RelativeTime dest)
throws ArithmeticException

Description

Returns an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result. When dest is not null, the
result is placed there and returned. Otherwise, a new object is allocated for the
result. The result will have the same chronograph association as this, and the
chronograph association with dest is ignored.

Parameters
millis—The number of milliseconds to be added to this.
nanos— T'he number of nanoseconds to be added to this.

dest—When dest is not null, the result is placed there and returned.
Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus millis and nanos in dest when dest
is not null, otherwise the result is returned in a newly allocated object.

add(RelativeTime)

Signature
public javax.realtime.RelativeTime
add(RelativeTime time)

RTSJ 2.0 (Final Draft) 287

9 Time RelativeTime

throws StaticIllegalArgumentException,
ArithmeticException

Description

Creates a new instance of RelativeTime representing the result of adding time
to the value of this and normalizing the result.

The chronograph associated with this and the clock associated with the
time parameter are expected to be the same, and such association is used for the
result.

Parameters
time—The time to add to this.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new RelativeTime object whose time is the normalization of this plus the
parameter time.

add(RelativeTime, RelativeTime)
Signature
public javax.realtime.RelativeTime
add(RelativeTime time,
RelativeTime dest)
throws StaticIllegalArgumentException,
ArithmeticException

Description

Returns an object containing the value resulting from adding time to the value
of this and normalizing the result. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to add to this.

dest—When dest is not null, the result is placed there and returned.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

288 RTSJ 2.0 (Final Draft)

RelativeTime javazx.realtime 9.3

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus the RelativeTime parameter time
in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

subtract(RelativeTime)
Signature
public javax.realtime.RelativeTime
subtract (RelativeTime time)
throws StaticIllegalArgumentException,
ArithmeticException

Description

Creates a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

Parameters
time—The time to subtract from this.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new RelativeTime object whose time is the normalization of this minus the
parameter time.

subtract(RelativeTime, RelativeTime)
Signature
public javax.realtime.RelativeTime
subtract (RelativeTime time,
RelativeTime dest)
throws StaticIllegalArgumentException,
ArithmeticException

Description

Returns an object containing the value resulting from subtracting the value of
time from the value of this and normalizing the result. When dest is not null,
the result is placed there and returned. Otherwise, a new object is allocated for
the result.

RTSJ 2.0 (Final Draft) 289

9 Time RelativeTime

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to subtract from this.
dest—When dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.
Throws
StaticIllegalArgumentException—when the Chronograph associated with this
and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the RelativeTime parameter time
in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

scale(int)

Signature
public javax.realtime.RelativeTime
scale(int factor)

Description

Changes the length of this relative time by multiplying it by factor.

Parameters
factor—Value by which to increase the time interval.
Returns

a new object with value of this scaled by factor.

Since RTSJ 2.0

scale(int, RelativeTime)
Signature
public javax.realtime.RelativeTime
scale(int factor,
RelativeTime time)

Description

Sets time to the value of this time multiplied by factor.

Parameters
factor—Value by which to increase the time in this.

time—Where to store the result.

290 RTSJ 2.0 (Final Draft)

RelativeTime javazx.realtime 9.3

Returns
time with the value of this scaled by factor

Since RTSJ 2.0

apportion(int, RelativeTime)
Signature
public javax.realtime.RelativeTime
apportion(int factor,
RelativeTime destination)

Description

Divide the current time by an integral factor.

Parameters

factor—by which to divide this time, which must be greater than zero.

destination—the destination relative time object.
Throws
StaticIllegalArgumentException—when factor is zero or negative.

Returns
destination or, when null, a new relative time object.

Since RTSJ 2.0

apportion(int)

Signature
public javax.realtime.RelativeTime
apportion(int factor)

Description

multiply the current time by an integral scaling factor.

Parameters
factor—by which to apportion this time.
Throws

ArithmeticException—when the scaling results in an overflow.

Returns
a new instance of RelativeTime with the result of the scaling.

Since RTSJ 2.0

multiply(float, RelativeTime)
Signature
public javax.realtime.RelativeTime
multiply(float factor,
RelativeTime dest)

RTSJ 2.0 (Final Draft)

291

9 Time RelativeTime

Description

Multiply this relative time by a floating point factor.

Parameters
factor—the factor by which to multiply.
dest—an object into which to place the result.
Returns
dest, when not null, or a new object holding the result.

Since RTSJ 2.0

negate(RelativeTime)

Signature
public javax.realtime.RelativeTime
negate(RelativeTime destination)

Description
Multiply the current time by -1. It gives the same results as scale(int, Rela-

tiveTime), where scale is given as -1; however it is much faster.

Parameters
destination—the destination relative time object.
Throws
ArithmeticException—when the negation results in an overflow.

Returns
destination or, when null, a new relative time object.

Since RTSJ 2.0

negate

Signature
public javax.realtime.RelativeTime
negate()

Description

Multiply the current time by -1. It gives the same results as scale(int), where
scale is given as -1; however it is much faster.

Throws
ArithmeticException—when the negation results in an overflow.

Returns
a new relative time object having the same magnitude but the opposite sign.

Since RTSJ 2.0

292 RTSJ 2.0 (Final Draft)

Rationale 9.4

compareToZero
Signature
public int
compareToZero ()

Description

Compares this to relative time zero returning the result of the comparison.
Equivalent to constantZero.compareTo(this)

Returns
negative when this is less than zero, 0, when it is equal to zero and a positive
when this is greater than zero.

Since RTSJ 2.0

toString

Signature
public java.lang.String
toString()

Description

Creates a printable string of the time given by this.
The string shall be a decimal representation of the milliseconds and nanosecond
values; formatted as follows "(2251 ms, 750000 ns)"

Returns
a String object converted from the time given by this.

9.4 Rationale

Time is the essence of realtime systems, and a method of expressing absolute time
with sub-millisecond precision is an absolute minimum requirement. Expressing time
in terms of nanoseconds has precedent and allows the implementation to provide
time-based services, such as timers, using whatever precision it is capable of while
the application requirements are expressed to an arbitrary level of precision.

The standard Java java.util.Date class uses milliseconds as its basic unit
in order to provide sufficient range for a wide variety of applications. Realtime
programming generally requires finer resolution, and nanosecond resolution is fine
enough for most purposes, but even a 64 bit realtime clock based in nanoseconds
would have insufficient range in some situations, so a compound format composed of
64 bits of millisecond timing, and 32 bits of nanoseconds within a millisecond, was
chosen.

The expression of millisecond and nanosecond constituents is consistent with
other Java interfaces.

The expression of relative times allows for time-based metaphors such as deadline-
based periodic scheduling where the cost of the task is expressed as a relative time and
deadlines are usually represented as times relative to the beginning of the period.

RTSJ 2.0 (Final Draft) 293

9 Time

294 RTSJ 2.0 (Final Draft)

Chapter 10

Clocks and Timers

In order to reason about time, the RTSJ needs not only to be able to express times
and calculate with them, but it also needs to be able to determine the current time
and allow actions to be performed when a given time is reached. For this purpose,
the specification defines one interface and four classes: Chronograph, Clock, Timer,
PeriodicTimer, and OneShotTimer.

A chronograph is used to measure time, whereas a clock is used to both measure
time and react to its passage: a clock can get the current time and it can trigger
timing events. At least one instance of the abstract Clock class, which implements
Chronograph, is provided by the implementation, the system realtime clock, and this
instance is made available as a singleton. The creation and use of other clocks and
chronographs are discussed later (see Section 10.2.2).

The Timer classes provide the means of executing code at a particular point in
time or repeatedly at a given interval. Timer is an abstract class and consequently
only its subclasses can be instantiated. The Timer class provides the interface and
underlying implementation for both one-shot and periodic timers. Instances of
OneShotTimer and PeriodicTimer can be created and rescheduled specifying the
initial firing time either as an AbsoluteTime or as a RelativeTime, to be considered
from the application of the start command. The PhasingPolicy class defines the
relationship between a PeriodicTimer’s start time and its first release time when
the start time is in the past.

By attaching an AsyncBaseEventHandler to a Timer, the program can cause
the release of the handler at a given time or after a given interval. An instance
of OneShotTimer describes an event that is to be triggered at most once, unless
restarted after expiration. It may be used as the source for time-outs and watchdog
timing. An instance of PeriodicTimer fires on a periodic schedule. The period for
a PeriodicTimer is always specified as a RelativeTime.

10.1 Definitions

Timing Mechanism — Something capable of representing and following the
progress of time, by means of time values.

Chronograph — A passive timing mechanism, which can only provide the current
time.

295

10 Clocks and Timers

Clock — An active timing mechanism, which can both provide the current time
and cause some action when a particular time is reached. All clocks are, by
definition, chronographs, but not necessarily vice versa.

Monotonically Increasing Timing Mechanism — A timing mechanism whose
time values never decrease. Monotonicity is a Boolean property, while time
synchronization, uniformity, and accuracy are characteristics that depend on
agreed tolerances. All monotonic clocks referenced in this specification are
monotonically increasing timing mechanisms.

Time Synchronization — A relation between two timing mechanisms. Two chrono-
graphs are synchronized when the difference between their time values is less
than some specified offset. Synchronization in general degrades with time, and
may be lost, given a specified offset.

Accuracy — The agreement between a chronograph and the true value that it
measures, e.g., absolute wall clock time.

Resolution — The minimal time value interval that can be represented by the clock
model.

Precision — The smallest tick size that a particular chronograph will observe.

Uniformity — In this context, the measurement of the progress of time at a
consistent rate, with a tolerance on the variability. Uniformity is affected by
two other factors, jitter and stability.

Jitter — The distribution of the differences between when events are actually fired or
noticed by the software and when they should have really occurred according to
time in the real-world. Jitter might be caused by short-term and noncumulative
small time variation due to noise sources, such as thermal noise.

Stability — The resistance to jitter, in this case temporal jitter. Lack of stability
can account for large and often cumulative variations, due to such occurrences
such as supply voltage and temperature change.

Drift — The rate of change of the cumulative variation between two timing mecha-
nisms.

Counting Time — The time accumulated by a Timer, while active, when created
or rescheduled using a RelativeTime to specify the initial firing or skipping
time. Counting Time is zeroed at the beginning of an activation and when
rescheduled, while active, before the initial firing or skipping of an activation.

10.2 Semantics

The semantics of chronographs, clocks, and timers are not simply functional. Tem-
poral attributes dominate their behavior; therefore, the interaction between classes
is critical to the overall understanding of the API. The class descriptions as well
as their constructor, method, and field documentation given later provide detailed
semantics to support the overall behavior.

10.2.1 Clock Model

Clocks and chronographs are backed by a physical means of measuring time. In
practice, each one is driven by an oscillator that has susceptible variation due to its

296 RTSJ 2.0 (Final Draft)

Semantics 10.2

environment. There is always some difference between the desired frequency and
the actual frequency of the oscillator, which is a major reason of synchronization
loss. The RTSJ Clock model must take this variability into account and therefore
establishes several invariants and expectations that can be relied upon by RTSJ
applications and in turn must be provided by RTSJ implementations.

1. The resolution of the RTSJ Clock model is 1 nanosecond. This is the smallest
unit of time that can be represented by a chronograph or timer via HighReso-
lutionTime and its subclasses.

2. The accuracy of RTSJ definable chronographs and clocks is outside the scope
of this specification. Accuracy is heavily dependent on hardware capabilities
and platform characteristics. RTSJ providers and system integrators should
characterize accuracy where possible.

3. The precision of RTSJ definable clock and chronograph (and, by proxy, the
precision of the timers associated with clocks) are defined in terms of nanosec-
onds per observable tick, and provided to the application programmer via the
various precision setters on Clock and Chronograph.

4. The realtime clock shall be monotonically increasing, and other clocks and
chronographs should be monotonically increasing as well. Where the universal
clock needs to be resynchronized with the external environment, this should
be at the expense of its uniformity rather than its monotonicity.

5. Time values returned by a chronograph should not be assumed to be comparable
to the time values from another chronograph unless the user has platform-
specific knowledge that the chronographs are compatible, except under specific
circumstances described below.

6. The system or any other realtime clock is not necessarily synchronized with the
external world, and the correctness of the epoch as a time base depends on such
synchronization. It is as uniform and accurate as allowed by the underlying
hardware.

If two Chronograph objects are both referenced to real time and return a value
from getEpochOffset (), then time values from those Chronographs can be compared
by applying their respective corrections. As documented in the getEpochO0ffset ()
method, its return value represents the offset of the associated Chronograph from the
universial clock Epoch, which may change over time if the associated Chronograph’s
time base does not proceed at the same rate as the realtime clock. However, the
results of any such comparison must be treated with caution as the accuracy of the
two Chronograph objects may be different.

The RTSJ Clock model is designed for maximum utility and predictability on
monotonically increasing timing mechanisms. Clocks that do not have this prop-
erty may display certain inconsistencies in the event of reverse discontinuities. In
particular, any the following may occur.

1. When a OneShotTimer is set on a nonmonotonic Clock, that clock experiences
a reverse discontinuity, and that timer has already fired, but the reverse
discontinuity would cause its expiry time to occur again, the timer will not fire
again.

2. When a PeriodicTimer is set on a nonmonotonic Clock, that clock experiences
a reverse discontinuity, and that timer has already fired for time T but the

RTSJ 2.0 (Final Draft) 297

10 Clocks and Timers

reverse discontinuity would cause time T to occur again, the handler for time
T will not be released again for time 7. This may mean that the elapsed
wall clock time between two firings of the PeriodicTimer exceeds the period
without the release of an associated miss handler or other detection, as the next
firing will happen when the clock reaches T'+ P, where P is the period of the
timer.

3. When a Timer is set on a nonmonotonic Clock and that clock experiences a
reverse discontinuity while that timer is scheduled for release at time 7', but
the reverse discontinuity causes time T to be “pushed back” with respect to
wall clock time, the Timer will not fire until time 7T is reached on the clock
and the elapsed wall clock time to T" will be of longer duration than it was
when the timer was set.

Forward or reverse discontinuities on a Clock may cause races for Timer releases
occurring very close to the time of the discontinuity. Therefore, the default realtime
clock should increment as consistently as possible under the design constraints of
the system.

10.2.2 Using Clocks

A Clock is the basic mechanism of measuring time and triggering events based on
the passage of time. Both a Timer and a RealtimeThread with PeriodicParameters
can request a signal from the clock when a given time is reached. That signal
should come as close to the actual time requested as possible. A schedulable
uses a clock to implement the realtime sleep methods. HighResolutionTime also
defines waitForObject with a timeout with a clock. Each clock instance shall be
capable of reporting the achievable resolution of timers based on that clock. Each
implementation shall have a default realtime clock that is used whenever no other
clock is specified. An application can also define additional clocks, including a UTC.

10.2.2.1 Sleeping and Waiting

A RealtimeThread uses clocks for sleeping and waiting for the next period with
RealtimeThread.waitForNextRelease. In both cases, a clock need only provide a
blocking wait method for the thread to call. This method needs to be public so that
an application-defined can provide Clock.wait to all RTSJ interfaces that require a
clock. A realtime thread provides the execution context that can wait on any given
clock.

10.2.2.2 Timer

A Timer also uses a clock to measure time, but it does not have an execution context
itself for waiting. Instead it has a TimeDispatcher instance, which it informs
when the time has elapsed (relative time) or has been reached (absolute time).
The TimeDispatcher causes the release of any AsyncEventHandler associated with
the Timer. In the context of a Timer, triggering is the action performed by a
TimeDispatcher that informs the Timer that it is time to fire or skip, where skip
causes the normal action of fire not to be carried out.

298 RTSJ 2.0 (Final Draft)

Semantics 10.2

A Timer is an ActiveEvent. This means that is has an associated dispatcher
called TimeDispatcher. As with other active events, the application can either use
the default dispatcher or create a new one with its own priority and affinity.

A Timer is active when it has been started and not stopped since last started and
it has a time in the future at which it is expected to fire or skip, else it is not active.

In the context of a Timer, enabling causes the Timer to fire when it is triggered,
while disabling causes the Timer to skip when it is triggered. Enabling and disabling
act as a mask over firing.

The behavior of a OneShotTimer is that of a Timer that does not automatically
reschedule its triggering after an initial triggering, regardless of whether it fires or
skips, i.e., is active but disabled when triggered. It is specified using an initial firing
time.

The behavior of a PeriodicTimer is that of a Timer that automatically resched-
ules after each triggering, regardless of whether the triggering results in a fire or a
skip due to being disabled when triggered. It is specified using an initial firing time
and an interval or period used for the self-rescheduling.

Both OneShotTimer and PeriodTimer are given an initial firing time. A Perio-
dicTimer receives two clock references, within two HighResolutionTimer objects,
which must be to the same clock. Thus the specification of the initial firing time and
the interval or period must refer to the same clock.

A RealtimeThread with PeriodicParameters acts analogously to a Periodic-
Timer with a single AsyncEventHandler. A Clock is to signal its TimeDispatcher
to release the thread from its waitForNextRelease method. When a release hap-
pens before the thread reaches its call to waitForNextRelease, the thread simply
continues, otherwise it waits for its release.

10.2.2.3 Dispatching

At any given time, a Timer has at most one clock associated with it, on which the
measurement of time for blocking is based. Each clock maintains a list of release
times, that are provided to it from threads and timers. The clock releases the thread
associated with each release time at the appropriate moment, i.e., when that time
occurs. In the case of a timer, the clock signals the TimeDispatcher associated with
the time, when its release time arrives, to signal it to dispatch or skip dispatching
the timer’s handlers, depending on the state of the timer. Figure 10.1 illustrates how
a timer interacts with an application-defined clock.

An external schedulable, depicted on the right, initializes the objects involved. A
TimeDispatcher and a Clock are created. These are used when creating an instance
of Timer as illustrated with step one and two respectively. A developer can always
use a pre-existing clock or dispatcher instead of creating new ones.

Steps (1) and (2) are optional, when a default dispatcher or default clock are
used respectively.

Steps (3) and (4) set up the time interval. When initiating the trigger for the
first time, step (5) starts the timer which activates the dispatcher in step (6). This
causes the dispatcher thread to wait on the clock for the first release time (7). A
dispatcher must keep a time and priority ordered list of fire times and only wait on

RTSJ 2.0 (Final Draft) 299

10 Clocks and Timers

Figure 10.1: Sequence Diagram for Using a Timer

Dispatching
] :Clock meDispatcher :PeriodicTimer :Schedulable
| || |
T T T]
T camen]! | | M
Caption ; : | ‘\
| .)
[| new +new(pr|or=ty) I/ optional @
I <
|
N S
L | R B >
— [ﬁ ,,,,,,,,, L ____ | ___clock_________ Lo ___ @
| /l for use in High‘hesolutionTime values, §g interval I +new(start,interval,dispatcher
| | | ~register(this) 3
; | +start() D<}(4) 777777 periogic N
| ; ‘ } +start()
|) ’
|) ~activate(this) 5)
! +wait(objeft, deadline) ac d
L 6,
L‘] @) {\jQ © ‘
t] 1 fire() ‘
7777777 | +fire I
e > 9) ! .) “T 1 (20) release handlers
loop J ‘r j, +wait(objett, deadline) DQMIW‘T‘
| u ™5 :
I I
i
I ! |
! Q ,,,,,,, I_+fire() |
L————1 (8) > (9% | ‘ ‘ (10*) release handlers
| ! L‘J
I ; | +stop()
| ~deactivate(this (1
! L ‘ 1 | T
I | ! |
X X X X X

the closest one in time, so that a dispatcher can serve more than one timer. It must
also be interruptible, so that a new shorter deadline can be accommodated.

When the release time is reached, the clock releases the dispatcher thread in step
(8). The dispatching thread then fires the timer which causes its handlers to be
release (10).

After this, steps (6) through (10) are repeated as long as the timer is enabled.

Finally in step (11) and (12), the timer can be stopped and removed from its
dispatcher.

Clocks and TimeDispatchers may be shared among as many timables as the
needs of the application dictate. Different dispatchers can be used with a given clock
and a dispatcher can service different clocks. The dispatcher should be chosen based
on its priority and affinity, whereas a clock should be chosen based on the temporal
reference, where the temporal reference may or may not be associated with clock
time. For instance, one could use a clock to represent the rotation of a shaft.

10.2.3 Modeling Timers

A timer must be associated with a clock. That clock acts as if it provides an interrupt
to each of its timers at the next instance of time at which the timer should do
something. In other words, a clock fires its timer at a requested time. Timers can be
modeled as counters, or as comparators.

A%

300 RTSJ 2.0 (Final Draft)

Semantics 10.2

10.2.3.1 Counter Model

In the timer model, a timer can be viewed as if every clock interrupt increments a
count up to the firing count, initially given by either an instance of RelativeTime or
computed as the difference between an instance of AbsoluteTime and a semantically
specified “now” (using the same clock).

1. start is understood as defining “now” and start counting, stop is understood
as stop counting. start after stop may be understood as start counting again
from where stopped, or start from scratch after resetting the count.

2. In both cases, a delay is introduced.

3. An RTSJ Timer, when using the counter model, resets the count when it is
restarted after being stopped.

4. When a Timer is created or rescheduled using a RelativeTime to specify
the initial alarm time, the RTSJ keeps the specified initial trigger time as a
RelativeTime and behaves according to the counter model.

10.2.3.2 Comparator Model

In the comparator model, a timer can be viewed as if every clock interrupt forces a
comparison between an absolute time and a firing time, initially given either as an
instance of AbsoluteTime or computed as the sum of an instance of RelativeTime
and a semantically specified “now” (using the same clock).

1. In this model, start is understood as start comparing, and possibly the first
start is understood as defining “now”. stop is understood as stop comparing.
start after stop may be understood as start comparing again.

2. In this case, no delay is introduced.

3. When a Timer is created or rescheduled using an AbsoluteTime to specify the
initial triggering time, the RTSJ keeps the specified initial firing time as an
AbsoluteTime and uses the comparator model.

10.2.3.3 Triggering

A clock signals to the associated timable that its alarm time has been reached
by triggering the dispatcher associated with the timable. This trigger causes the
dispatcher to fire the associated timer. When the timer is active, it releases its
handlers and is said to be fired. When the timer is inactive, nothing happens and
it is said to be skipped. A stopped timer is never triggered. For this it must be
running.

10.2.3.4 Behavior of Timers

There are two kinds of timers defined: OneShotTimer and PeriodicTimer. As their
names imply, the first is used to mark a single time interval and the second is to
mark a regularly repeating time interval.

The OneShotTimer class shall ensure that each instance is fired at most once at
the time specified unless restarted after expiration.

The PeriodicTimer class shall enable the period of a timer to be expressed in
terms of a RelativeTime. The initial firing of a PeriodicTimer occurs in response

RTSJ 2.0 (Final Draft) 301

10 Clocks and Timers

to the invocation of its start method, in accordance with the start time passed to its
constructor. The PhasingPolicy class defines the relationship between the timer’s
start time and its first firing when the start time is in the past. This initial firing or
skipping, may be rescheduled by a call to the reschedule method, in accordance
with the time passed to that method.

Given an instance of PeriodicTimer, let S be the effective time, as an absolute
time, at which the initial firing or skipping of a PeriodicTimer is scheduled to occur:

1. when the start, or reschedule, time was given as an absolute time, A, and that

time is in the future when the timer is made active, then S equals A, otherwise

2. when the absolute time has passed when the timer is made active, then S

depends on the phasing mode of that instance of PeriodicTimer.
The firings of a PeriodicTimer are scheduled to occur according to S + nT, for
n=0,1,2,... where S is as just specified, and T is the interval of the periodic timer.

For all timers, when the start or reschedule time is given as a relative time, R, S
equals the time at which the counting time, started when the timer was made active,
equals R. The transition to not-active by this timer causes the counting time to
reset, effectively preventing this kind of timer from firing immediately, unless given a
time value of 0.

When in a not-active state a Timer retains the parameters given at construction
time or the parameters it had at de-activation time. Those are the parameters that
will be used upon invocation of start while in that state, unless the parameters are
explicitly changed before that, using reschedule and setInterval as appropriate.

When a Timer object is allocated in a scoped memory area, then it will increment
the reference count associated with that area. Such a reference count will only be
decremented when the Timer object is destroyed. (See semantics in the Memory
chapter for details.) A Timer object will not fire before its due time.

The states of a Timer are essentially the same as for an ActiveEvent as depicted
in Figure 8.4. The main difference is that the time used for the next fire may be
either an absolute time or a relative time. Figure 10.2 reflects this difference in a
UML state diagram.

10.2.3.5 Phasing

Phasing comes into play only when a periodic timer (with period T') starts after its
initial time. This can happen when an absolute start time (A) is specified and the
start method is called after that time. It is used to determine the effective start time
S

1. S is the next multiple of A + nT', when phasing is ADJUST FORWARD,

2. S is the most recent multiple of A + nT’, when phasing is ADJUST_BACKWARD,

3. S is “now,” when phasing is ADJUST_TO_START, and

4. S is undefined and an exception it thrown when phasing is STRICT_PHASING.
The default phasing is ADJUST_TO_START.

302 RTSJ 2.0 (Final Draft)

Chronograph javax.realtime 10.3

Figure 10.2: States of a Timer!

stop -> false

startDisabled

st(p disable A
/. >tue |
a N | N D
‘ RelativeTime B
L - - reschedule
new(relative time) 3 Active Actlve relative time)
Enabled Disabled
Relative Relative
o J
reschedule i
(. NedL Inactive)) reschedule
(relative time) Disabled Enabled Active Disabled (absolufe time)
(" Absolute Time R
new(absolute time) 1 Active Actlve reschedule
p: Enabled Disabled (absolule time)
Absolute Absolute R
. %
N J _) \ J
/I\stopl | start /I\ 4\ enable
-> false _ J
start AN

-> |llegalStateException

startDisabled
-> |llegalStateException

10.3 javax.realtime

10.3.1 Interfaces
10.3.1.1 Chronograph

public interface Chronograph

Description

The interface for all devices that support the measurement of time with great
accuracy.

Since RTSJ 2.0

10.3.1.1.1 Methods

!Note that the semantics of the fire transition differ among the subclasses of Timer.

RTSJ 2.0 (Final Draft) 303

10 Clocks and Timers Chronograph

getEpochOffset
Signature
public javax.realtime.RelativeTime
getEpochOffset ()
throws StaticUnsupportedOperationException,
UninitializedStateException

Description
Determines the difference between the epoch of this clock from the Epoch. For
the UTC, the result is always a RelativeTime value equal to zero. For other
clocks, it is a value representing the difference between zero on that clock and

zero on the UTC measured on the UTC, where a positive epoc is later than the
EPOC.

Throws
StaticUnsupportedOperationException—when the chronograph does not have
the concept of date.

UninitializedStateException—when UTC time is not yet available.

Returns
a newly allocated RelativeTime object in the current execution context with the
UTC as its chronograph and containing the time when this chronograph was
Zero.

getEpochOffset (RelativeTime)
Signature
public javax.realtime.RelativeTime
getEpochOffset (RelativeTime dest)
throws StaticUnsupportedOperationException,
UninitializedStateException

Description
Determines the difference between the epoch of this clock from the Epoch. For
the UTC, the result is always a RelativeTime value equal to zero. For other

clocks, it is a value representing the difference between zero on that clock and
zero on the UTC measured on the UTC.

Parameters
dest—An instance of RelativeTime object which will be updated in place.
Throws
StaticUnsupportedOperationException—when the chronograph does not have
the concept of date.

UninitializedStateException—when UTC time is not yet available.
Returns
the instance of RelativeTime passed as parameter, or a new object when dest is

null. The returned object represents the time differnce between its associated
chronograph and the Epoch.

304 RTSJ 2.0 (Final Draft)

Chronograph javax.realtime 10.3

getTime

Signature
public javax.realtime.AbsoluteTime
getTime ()

Description

Determines the current time. This method returns an absolute time value
representing the chronograph’s notion of absolute time. For chronographs that
do not measure calendar time, this absolute time may not represent a wall clock
time.

Returns
a newly allocated instance of AbsoluteTime in the current allocation context,
representing the current time. The returned object has the chronograph from
this.

getTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getTime (AbsoluteTime dest)

Description

Obtains the current time. The time represented by the given AbsoluteTime is
changed at some time between the invocation of the method and the return of
the method. This method will return an absolute time value that represents
this chronographs’s notion of the absolute time. For chronographs that do not
measure calendar time, this absolute time may not represent a wall clock time.

Parameters
dest—The instance of AbsoluteTime object which will be updated in place.
Returns
the instance of AbsoluteTime passed as parameter, or a new object when dest is
null. The returned object represents the current time and is associated with
this chronograph.

isUpdated
Signature
public boolean
isUpdated()

Description

Determine whether or not this time keeper is asynchronously synchronized with
an external time source. Synchronization requires the ability to adjust the time
to compensate for drift. For example, a UTC is continually synchronized with an
external time source, but realtime clocks are not.

RTSJ 2.0 (Final Draft) 305

10 Clocks and Timers Chronograph

Returns
true for chronographs that are synchronized and false otherwise.

lastSynchronized

Signature
public javax.realtime.AbsoluteTime
lastSynchronized()
throws StaticUnsupportedOperationException

Description

Determine the last time this chronograph was synchronized. It is the same as
calling lastSynchronized (AbsoluteTime) with null as an argument.

Throws
StaticUnsupportedOperationException—when the chronograph will never be
updated, i.e., is never synchronized with an external time source.

Returns
a newly allocated time value holding last synchronized time.

lastSynchronized (AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
lastSynchronized (AbsoluteTime result)
throws StaticUnsupportedOperationException

Description

Determine the last time this chronograph was synchronized with an external time
source.

Parameters
result—a time object to hold the result.
Throws
StaticUnsupportedOperationException—when the chronograph will never be
updated, i.e., is never synchronized with an external time source.

Returns
when result is null, a newly allocated time value holding the value corresponding
to the last synchronized time; otherwise result updated with that current
value.

getQueryPrecision

Signature
public javax.realtime.RelativeTime
getQueryPrecision()

306 RTSJ 2.0 (Final Draft)

Clock javax.realtime 10.3

Description
Obtains the precision with which time can be read, i.e., the nominal interval
between ticks. It is the same as calling getQueryPrecision(RelativeTime)
with null as an argument.

Returns
a newly allocated time value holding the read precision.

getQueryPrecision(RelativeTime)
Signature
public javax.realtime.RelativeTime
getQueryPrecision(RelativeTime dest)

Description

Obtains the precision with which time can be read, i.e., the nominal interval
between ticks.

Parameters
dest—The time object in which to return the results.
Returns
the read precision in dest, when dest is not null, or in a newly created object
otherwise.

10.3.2 Classes
10.3.2.1 Clock

public abstract class Clock

Inheritance

java.lang.Object
Clock

Interfaces
javax.realtime.Chronograph

Description

A clock marks the passing of time. It has a concept of now that can be queried
through Clock.getTime (), and it can have events queued on it which will be
fired when their appointed time is reached.

Note that while all Clock implementations use representations of time derived
from HighResolutionTime, which expresses its time in milliseconds and nanosec-
onds, a particular Clock may track time that is not delimited in seconds or not
related to wall clock time in any particular fashion (e.g., revolutions or event
detections). In this case, the Clock’s timebase should be mapped to milliseconds
and nanoseconds in a manner that is computationally appropriate.

RTSJ 2.0 (Final Draft) 307

10 Clocks and Timers Clock

10.3.2.1.1 Constructors

Clock

Signature
public
Clock()

Description

Constructor for the abstract class.

10.3.2.1.2 Methods

getRealtimeClock

Signature
public static javax.realtime.Clock
getRealtimeClock ()

Description

There is always at least one clock object available: the system realtime clock.
This clock is monotonically increasing and does not need to start at the Epoch.
On a POSIX system, it is equivalent to CLOCK_MONOTONIC. It is the default Clock.

Returns
the singleton instance of the default Clock

setRealtimeClock(Clock)

Signature

public static void
setRealtimeClock(Clock clock)

Description
Sets the system default realtime clock.
Parameters

clock—To be used for the realtime clock. When null, the default realtime clock
is set to the original system default.

308 RTSJ 2.0 (Final Draft)

Clock javax.realtime 10.3

getUniversalClock
Signature
public static javax.realtime.Clock
getUniversalClock()
throws StaticUnsupportedOperationException,
UninitializedStateException

Description

A means of obtaining the Universal Time, which has no summer or winter time.
Local time can be obtained by adding the appropriate time zone offset. Such a
time source is not available on all systems and may take a while to set up on
some systems which support it. It is not guarenteed to be monotonic.

Throws
StaticUnsupportedOperationException—when the system does not support
UTC.

UninitializedStateException—when UTC time is not yet available.

Returns
a Clock that tracts UTC, such as the POSIX CLOCK_REALTIME, when the timezone
is set to UTC.

Since RTSJ 2.0

set UniversalClock(Clock)
Signature
public static void
setUniversalClock(Clock clock)

Description

Sets the system default universal clock.

Parameters
clock—To be used for the universal clock. When null, the default universal clock
is set to the original system default.
Since RTSJ 2.0

getEpochOffset
Signature
public javax.realtime.RelativeTime
getEpochOffset ()
throws StaticUnsupportedOperationException,
UninitializedStateException

Description

RTSJ 2.0 (Final Draft) 309

10 Clocks and Timers Clock

Determines the difference between the epoch of this clock from the Epoch. For
the UTC, the result is always a RelativeTime value equal to zero. For other
clocks, it is a value representing the difference between zero on that clock and

zero on the UTC measured on the UTC, where a positive epoc is later than the
EPOC.

Throws
StaticUnsupportedOperationException—when the chronograph does not have
the concept of date.

UninitializedStateException—when UTC time is not yet available.

Since RTSJ 1.0.1

getDrivePrecision

Signature
public javax.realtime.RelativeTime
getDrivePrecision()

Description

Gets the precision of the clock for driving events, the nominal interval be-
tween ticks that can trigger an event. It is the same as calling getDrivePreci-
sion(RelativeTime) with null as its argument.

Returns
a value representing the drive precision.

Since RTSJ 2.0

getQueryPrecision(RelativeTime)
Signature
public javax.realtime.RelativeTime
getQueryPrecision(RelativeTime dest)

Description

Obtains the precision with which time can be read, i.e., the nominal interval
between ticks. This base implementation does nothing for compatibility and must
be overridden in subclasses.

Parameters
dest—To return the relative time value in dest. When dest is null, it allocates a
new RelativeTime instance to hold the returned value.
Returns
the read precision in dest, when dest is not null, or in a newly created object
otherwise.

Since RTSJ 2.0

310 RTSJ 2.0 (Final Draft)

Clock javax.realtime 10.3

getDrivePrecision(RelativeTime)
Signature
public javax.realtime.RelativeTime
getDrivePrecision(RelativeTime dest)

Description

Gets the precision of the clock for driving events, the nominal interval between
ticks that can trigger an event. The result may be larger than that of Chronograph.
getQueryPrecision(RelativeTime). The base implementation does nothing
for compatibility and must be overridden in subclasses.

Parameters
dest—To return the relative time value in dest. When dest is null, it allocates a
new RelativeTime instance to hold the returned value.
Returns
dest set to values representing the drive precision.

Since RTSJ 2.0

getTime

Signature
public javax.realtime.AbsoluteTime
getTime ()

Description

Returns
a newly allocated instance of AbsoluteTime in the current allocation context,
representing the current time. The returned object has the chronograph from
this.

getTime(AbsoluteTime)

Signature
public abstract javax.realtime.AbsoluteTime
getTime (AbsoluteTime dest)

Description

Obtains the current time. The time represented by the given AbsoluteTime is
changed at some time between the invocation of the method and the return of
the method. This method will return an absolute time value that represents
this chronographs’s notion of the absolute time. For chronographs that do not
measure calendar time, this absolute time may not represent a wall clock time.

Parameters
dest—The instance of AbsoluteTime object which will be updated in place.
Returns

RTSJ 2.0 (Final Draft) 311

10 Clocks and Timers OneShotTimer

the instance of AbsoluteTime passed as parameter, or a new object when dest is
null. The returned object represents the current time and is associated with
this chronograph.

Since RTSJ 1.0.1 The return value is updated from void to AbsoluteTime.
Since RTSJ 2.0 When dest is null, a new object is allocated, when not chronograph
is overwritten with this.

wait(Object, HighResolutionTime)
Signature
public boolean
wait (Object rendezvous,
HighResolutionTime<?> deadline)
throws InterruptedException

Description

Generic wait function that waits for a waiting for a deadlime. The time given is a
time on the given clock. A user defined clock uses the the rendezvous object to
hold the schedulable until the time has elapsed. The caller must be synchronized
on rendezvous. This is used to implement both RealtimeThread.sleep and
RealtimeThread.waitForNextRelease

Parameters
rendezvous—an object to wait on until time has passed thus letting the current
thread to continue.
deadline—The time when the wait should end
Throws
InterruptedException—when interrupted
IllegalArgumentException—if time is a relative time less than zero or if time is
neither AbsoluteTime nor RelativeTime.

Returns
true when deadline is reached and false when interrupted before deadline

Since since RTSJ 2.0

10.3.2.2 OneShotTimer

public class OneShotTimer

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent

Timer
OneShotTimer

Description

312 RTSJ 2.0 (Final Draft)

OneShotTimer javax.realtime 10.3

A timed AsyncEvent that is driven by a Clock. It will fire once, when the clock
time reaches the time-out time, unless restarted after expiration. When the timer
is disabled at the expiration of the indicated time, the firing is lost (skipped).
After expiration, the OneShotTimer becomes not-active and disabled. When the
clock time has already passed the time-out time, it will fire immediately after it
is started or after it is rescheduled while active.

Semantics details are described in the Timer pseudocode and compact graphic
representation of state transitions.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

10.3.2.2.1 Constructors

OneShotTimer(HighResolutionTime, AsyncBaseEventHand-
ler, TimeDispatcher)
Signature
public
OneShotTimer (HighResolutionTime<?> time,
AsyncBaseEventHandler handler,
TimeDispatcher dispatcher)
throws StaticIllegalArgumentException,
StaticUnsupportedOperationException,
IllegalAssignmentError

Description

Creates an instance of OneShotTimer, based on the given clock, that will execute
its fire method according to the given time. The Clock association of the
parameter time is ignored.

Since RTSJ 2.0
Parameters
time—The time used to determine when to fire the event. A time value of null is
equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start ().
handler—The default handler to use for this event. When null, no handler is
associated with the timer and nothing will happen when this event fires unless
a handler is subsequently associated with the timer using the addHandler ()
or setHandler () method.
dispatcher—The dispatcher used to interface between this timer and its associ-
ated clock. When null, the system default dispatcher is used.
Throws
StaticIllegalArgumentException—when time is a RelativeTime instance less
than zero.

RTSJ 2.0 (Final Draft) 313

10 Clocks and Timers PeriodicTimer

StaticUnsupportedOperationException—when the Chronograph associated
with time is not a Clock.

IllegalAssignmentError—when this OneShotTimer cannot hold references to
time, handler, or clock.

OneShotTimer(HighResolutionTime, AsyncBaseEventHand-
ler)

Signature
public
OneShotTimer (HighResolutionTime<?> time,
AsyncBaseEventHandler handler)

Description

The equivalent of calling OneShotTimer (HighResolutionTime, AsyncBaseEv-
entHandler, TimeDispatcher) with arguments (time, handler, null).

Parameters
time—Time to release its handlers.

handler—Handler to be released.

10.3.2.2.2 Methods

fire

Signature
public void
fire()

Description

This should not be called for application code, except for emulation. The fire
method is reserved for the use of the system. When this is enabled, it releases
all handlers and then calls Timer.stop(). When distabled, but active, it only
calls Timer.stop(). Otherwise it does nothing.

Since RTSJ 2.0 moved here from Timer, since OneShotTimer and PeriodicTimer
have slightly different semantics.

10.3.2.3 PeriodicTimer

public class PeriodicTimer

Inheritance

java.lang.Object
AsyncBaseEvent

314 RTSJ 2.0 (Final Draft)

PeriodicTimer javazx.realtime 10.3

AsyncEvent
Timer
PeriodicTimer

Description

An AsyncEvent whose fire method is executed periodically according to the
given parameters. The clock associated with the Timer start time must be
identical to the the clock associated with the Timer interval

The first firing is at the beginning of the first interval.

When an interval greater than 0 is given, the timer will fire periodically. When
an interval of 0 is given, the PeriodicTimer will only fire once, unless restarted
after expiration, behaving like a OneShotTimer. In all cases, when the timer is
disabled when the firing time is reached, that particular firing is lost (skipped).
When enabled at a later time, it will fire at its next scheduled time.

When the clock time has already passed the beginning of the first period, the
PeriodicTimer will first fire according to the PhasingPolicy.

Semantics details are described in the Timer pseudo-code and compact graphic
representation of state transitions.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

10.3.2.3.1 Constructors

PeriodicTimer(HighResolutionTime, RelativeTime, Async-
BaseEventHandler, TimeDispatcher)
Signature
public
PeriodicTimer (HighResolutionTime<?> start,
RelativeTime interval,
AsyncBaseEventHandler handler,
TimeDispatcher dispatcher)
throws StaticIllegalArgumentException,
IllegalAssignmentError,
StaticUnsupportedOperationException

Description

Creates a timer that executes its fire method periodically.

Since RTSJ 2.0
Parameters
start—The time that specifies when the first interval begins, based on the clock
associated with it. The first firing of the timer is modified according to the
PhasingPolicy when the timer is started. A start value of null is equivalent
to a RelativeTime of 0.

RTSJ 2.0 (Final Draft) 315

10 Clocks and Timers PeriodicTimer

interval—The period of the timer. Its usage is based on the clock specified by
the clock parameter. When interval is zero or null, the period is ignored
and the firing behavior of the PeriodicTimer is that of a OneShotTimer.

handler—The default handler to use for this event. When null, no handler is
associated with the timer and nothing will happen when this event fires unless
a handler is subsequently associated with the timer using the addHandler ()
or setHandler () method.

dispatcher—The dispatcher to use for triggering this event.
Throws

StaticIllegalArgumentException—when start or interval is a RelativeTime
instance with a value less than zero; or the clocks associated with start and
interval are not the identical.

IllegalAssignmentError—when this PeriodicTimer cannot hold references to
handler, clock and interval.

StaticUnsupportedOperationException—when the Chronograph associated
with time is not a Clock.

PeriodicTimer(HighResolutionTime, RelativeTime, Async-
BaseEventHandler)
Signature
public
PeriodicTimer (HighResolutionTime<?> start,
RelativeTime interval,
AsyncBaseEventHandler handler)
throws StaticIllegalArgumentException,
IllegalAssignmentError

Description

Creates a timer that executes its fire method periodically. Equivalent to Period-
icTimer(start, interval, handler, null).

Since RTSJ 2.0

10.3.2.3.2 Methods

getClock

Signature
public javax.realtime.Clock
getClock()
throws StaticIllegalStateException

Description

316 RTSJ 2.0 (Final Draft)

PeriodicTimer javazx.realtime 10.3

Each instance can only be associated with a single clock, which this method can
obtain.

Throws
StaticIllegalStateException—when this has been destroyed.

Returns
the instance of Clock that is associated with this.

Since RTSJ 1.0.1

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters<7>
createReleaseParameters()

Description
Creates a release parameters object with new objects containing copies of the
values corresponding to this timer. When the PeriodicTimer interval is greater
than 0, creates a PeriodicParameters object with a start time and period that
correspond to the next firing (or skipping) time, and interval, of this timer. When
the interval is 0, creates an AperiodicParameters object, since in this case the
timer behaves like a OneShotTimer.

When this timer is active, then the start time is the next firing (or skipping)
time returned as an AbsoluteTime. Otherwise, the start time is the initial firing
(or skipping) time, as set by the last call to Timer.reschedule, or when there
was no such call, by the constructor of this timer.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

Returns
a new release parameters object with new objects containing copies of the values
corresponding to this timer. When the interval is greater than zero, returns
a new instance of PeriodicParameters. When the interval is zero returns a
new instance of AperiodicParameters.

getFireTime
Signature
public javax.realtime.AbsoluteTime
getFireTime ()
throws ArithmeticException,
StaticIllegalStateException

Description
Gets the time at which this PeriodicTimer is next expected to fire or to skip.
When the PeriodicTimer is disabled, the returned time is that of the skipping
or firing. When the PeriodicTimer is not-active it throws StaticIllegalSta-
teException.

RTSJ 2.0 (Final Draft) 317

10 Clocks and Timers PeriodicTimer

Throws
ArithmeticException—when the result does not fit in the normalized format.

StaticIllegalStateException—when this Timer has been destroyed, or when it
is not-active.

Returns

the absolute time at which this is next expected to fire or to skip, in a newly
allocated AbsoluteTime object. When the timer has been created or re-
scheduled (see Timer.reschedule(HighResolutionTime)) using an instance
of RelativeTime for its time parameter, then it will return the sum of the
current time and the RelativeTime remaining time before the timer is expected
to fire/skip. Within a periodic timer activation, the returned time is associated
with the start clock before the first fire (or skip) time, and associated with the
interval clock otherwise.

getFireTime(AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
getFireTime (AbsoluteTime dest)

Description

Gets the time at which this PeriodicTimer is next expected to fire or to skip.
When the PeriodicTimer is disabled, the returned time is that of the skipping.
When the PeriodicTimer is not-active it throws StaticIllegalStateExcep-
tion.

Parameters
dest—The instance of AbsoluteTime which will be updated in place and returned.
The clock association of the dest parameter is ignored. When dest is null, a
new object is allocated for the result.
Throws
ArithmeticException—when the result does not fit in the normalized format.

StaticIllegalStateException—when this Timer has been destroyed, or when it
is not-active.

Returns

the instance of AbsoluteTime passed as parameter, with time values representing
the absolute time at which this is expected to fire or to skip. When
the dest parameter is null, the result is returned in a newly allocated
object. ~When the timer has been created or re-scheduled (see Timer.
reschedule (HighResolutionTime)) using an instance of RelativeTime
for its time parameter then it will return the sum of the current time and
the RelativeTime remaining time before the timer is expected to fire/skip.
Within a periodic timer activation, the returned time is associated with the
start clock before the first fire (or skip) time, and associated with the interval
clock otherwise.

Since RTSJ 1.0.1

318 RTSJ 2.0 (Final Draft)

PeriodicTimer javazx.realtime 10.3

getInterval

Signature
public javax.realtime.RelativeTime
getInterval()

Description

Gets the interval of this Timer.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

Returns
the RelativeTime instance assigned as this periodic timer’s interval by the con-
structor or setInterval (RelativeTime).

setInterval(RelativeTime)

Signature
public javax.realtime.PeriodicTimer
setInterval (RelativeTime interval)

Description
Resets the interval value of this.

Parameters
interval—A RelativeTime object which is the interval used to reset this Timer.
A null interval is interpreted as RelativeTime(0,0).
The interval does not affect the first firing (or skipping) of a timer’s activation.
At each firing (or skipping), the next fire (or skip) time of an active periodic
timer is established based on the interval currently in use. Resetting the
interval of an active periodic timer only affects future fire (or skip) times
after the next.
Throws
StaticIllegalArgumentException—when interval is a RelativeTime instance
with a value less than zero, or the clock associated with interval is different
to the clock associated with this.

IllegalAssignmentError—when this PeriodicTimer cannot hold a reference to
interval.
StaticIllegalStateException—when this Timer has been destroyed.

Returns
this

fire

Signature
public void
fire()

RTSJ 2.0 (Final Draft) 319

10 Clocks and Timers TimeDispatcher

Description

This should not be called for application code, except for emulation. The fire
method is reserved for the use of the system. When this is enabled, it releases
all handlers and then reschedules itself for the next period without changing
state. When distabled, but active, it simply reschedules itself. Otherwise it does
nothing.

Since RTSJ 2.0 moved here from Timer, since OneShotTimer and PeriodicTimer
have slightly different semantics.

10.3.2.4 TimeDispatcher

public class TimeDispatcher

Inheritance

java.lang.Object
ActiveEventDispatcher<TimeDispatcher, Timer>
TimeDispatcher

Description

A dispatcher for time events: Timer and RealtimeThread.sleep.

Since RTSJ 2.0

10.3.2.4.1 Constructors

TimeDispatcher(SchedulingParameters, RealtimeThread-
Group)
Signature
public
TimeDispatcher(SchedulingParameters schedule,
RealtimeThreadGroup group)
throws StaticIllegalStateException

Description

Creates a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule—It gives the parameters for scheduling this dispatcher
Throws
StaticIllegalStateException—when the intersection of affinity in schedule
and the affinity of group does not correspond to a valid affinity.

320 RTSJ 2.0 (Final Draft)

TimeDispatcher javax.realtime 10.3

TimeDispatcher(SchedulingParameters)
Signature
public
TimeDispatcher (SchedulingParameters schedule)
throws StaticIllegalStateException

Description

Creates a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule—It gives the parameters for scheduling this dispatcher
Throws
StaticIllegalStateException—when the intersection of affinity in schedule
and the affinity of the current rhread groupo does not correspond to a valid
affinity.

10.3.2.4.2 Methods

setDefaultDispatcher(TimeDispatcher)
Signature
public static void
setDefaultDispatcher(TimeDispatcher dispatcher)

Description

Sets the system default time dispatcher.

Parameters
dispatcher—To be used when no dispatcher is provided. When null, the default
time dispatcher is set to the original system default.

getDefaultDispatcher

Signature
public static synchronized javax.realtime.TimeDispatcher
getDefaultDispatcher ()

Description

Obtain the default dispatcher for timers

Returns
the current default dispatcher

RTSJ 2.0 (Final Draft) 321

10 Clocks and Timers TimeDispatcher

isRegistered (Timer)
Signature
public boolean
isRegistered(Timer target)

Description

Test wether or not a given event is registered with this dispatcher.

register(Timer)
Signature
protected void
register(Timer target)
throws RegistrationException,
StaticIllegalStateException

Description

Registers an active event with this dispatcher. Registering an event prevents the
event from being programmatically destroyed, but it may not hold the dispatcher
from being collected when the dispatcher is in a more deeply nested scope.

activate(Timer)
Signature
protected void
activate(Timer target)
throws StaticIllegalStateException

Description

Activate an active event registered with this dispatcher.

deregister(Timer)
Signature
protected void
deregister(Timer target)
throws DeregistrationException,
StaticIllegalStateException

Description

Deregisters an active event from this dispatcher, breaking its association with this
dispatcher. This should only happen when an event is assoicated with another
dispather.

322 RTSJ 2.0 (Final Draft)

Timer javazx.realtime 10.3

deactivate(Timer)
Signature
protected void
deactivate(Timer target)
throws StaticIllegalStateException

Description

Deactivate an active event registered with this dispatcher.

destroy
Signature
public void
destroy()
throws StaticIllegalStateException

Description

Releases all resources thereby making the dispatcher unusable.

Throws
StaticIllegalStateException—when called on a dispatcher that has one or more
registered Timer objects.

10.3.2.5 Timer

public abstract class Timer

Inheritance

java.lang.Object
AsyncBaseEvent
AsyncEvent
Timer

Interfaces
javax.realtime.ActiveEvent

Description

A timer is a timed event that measures time according to a given Clock. This
class defines basic functionality available to all timers. Applications will generally
use either PeriodicTimer to create an event that is fired repeatedly at regular
intervals, or OneShotTimer for an event that just fires once at a specific time.
A timer is always associated with at least one Clock, which provides the basic
facilities of something that ticks along following some time line (realtime, CPU-
time, user-time, simulation-time, etc.). All timers are created disabled and do
nothing until start () is called.

RTSJ 2.0 (Final Draft) 323

10 Clocks and Timers Timer

10.3.2.5.1 Constructors

Timer(HighResolutionTime, AsyncBaseEventHandler, Time-
Dispatcher)
Signature
protected
Timer (HighResolutionTime<?> time,
AsyncBaseEventHandler handler,
TimeDispatcher dispatcher)
throws StaticIllegalArgumentException,
StaticUnsupportedOperationException,
IllegalAssignmentError

Description

Creates a timer that fires according to the given time based on the Clock
associated with time and is dispatched by the specified dispatcher.

Since RTSJ 2.0
Parameters
time—The parameter used to determine when to fire the event. A time value of
null is equivalent to a RelativeTime of 0, and in this case the Timer fires
immediately upon a call to start ().

handler—The default handler to use for this event. When null, no handler is
associated with the timer and nothing will happen when this event fires unless
a handler is subsequently associated with the timer using the addHandler ()
or setHandler () method.

dispatcher—The object used to interface between this timer and its associated
clock. When null, the system default dispatcher is used.

Throws

StaticIllegalArgumentException—when time is a negative RelativeTime
value.

StaticUnsupportedOperationException—when time has a Chronograph is not
a clock.

IllegalAssignmentError—when this Timer cannot hold references to handler
and clock.

10.3.2.5.2 Methods

getClock

Signature

324 RTSJ 2.0 (Final Draft)

Timer javazx.realtime 10.3

public javax.realtime.Clock
getClock()
throws StaticIllegalStateException

Description
Obtains the instance of Clock on which this timer is based.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

Returns
the instance of Clock associated with this Timer.

getStart

Signature
public javax.realtime.HighResolutionTime<7>
getStart ()

Description
Gets the start time of this Timer. Note that the start time uses copy semantics,
so changes made to the value returned by this method do not affect the start
time of this Timer.

Returns
a reference to the time (or start) parameter used when constructing this Timer,
ensuring the content has the original values.

Since RTSJ 2.0

getEffectiveStartTime
Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime ()
throws StaticIllegalStateException,
ArithmeticException

Description

Returns a newly-created time representing the time when the timer actually
started, or when the timer has been rescheduled, the effective start time after the
reschedule.

Throws
StaticIllegalStateException—when the timer is not active or has been de-
stroyed.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the time this actually started.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 325

10 Clocks and Timers Timer

getEffectiveStartTime(AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime (AbsoluteTime dest)
throws StaticIllegalStateException,
ArithmeticException

Description

Updates dest to represent the time when the timer actually started, or when the
timer has been rescheduled, the effective start time after the reschedule. When
dest is null, behaves as if getEffectiveStartTime () had been called.

Parameters
dest—An object used to store the time this actually started.
Throws
StaticIllegalStateException—when the timer is not active or has been de-
stroyed.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the time when the timer actually started, or when it has been rescheduled, the
effective start time after the reschedule.

Since RTSJ 2.0

getFireTime
Signature
public javax.realtime.AbsoluteTime
getFireTime ()
throws StaticIllegalStateException,
ArithmeticException

Description

Gets the time at which this Timer is expected to fire. When the Timer is disabled,
the returned time is that of the skipping or the firing. When the Timer is
not-active, it throws StaticIllegalStateException.

Throws
ArithmeticException—when the result does not fit in the normalized format.

StaticIllegalStateException—when this Timer has been destroyed, or when it
is not-active.

Returns
the absolute time at which this is expected to fire (release handlers or skip), in
a newly allocated AbsoluteTime object. When the timer has been created
or re-scheduled (see Timer.reschedule) using an instance of RelativeTime
for its time parameter, then it will return the sum of the current time and
the RelativeTime remaining time before the timer is expected to fire/skip.

326 RTSJ 2.0 (Final Draft)

Timer javazx.realtime 10.3

The clock association of the returned time is the clock on which this timer is
based.

getFireTime(AbsoluteTime)
Signature
public javax.realtime.AbsoluteTime
getFireTime (AbsoluteTime dest)
throws StaticIllegalStateException,
ArithmeticException

Description

Gets the time at which this Timer is expected to fire. When the Timer is disabled,
the returned time is that of the skipping or the firing. When the Timer is
not-active it throws StaticIllegalStateException.

Parameters
dest—The instance of AbsoluteTime which will be updated in place and returned.
The clock association of the dest parameter is ignored. When dest is null, a
new object is allocated for the result.
Throws
ArithmeticException—when the result does not fit in the normalized format.

StaticIllegalStateException—when this Timer has been destroyed, or when it
is not-active.

Returns

the instance of AbsoluteTime passed as parameter, with time values representing
the absolute time at which this is expected to fire (release its handlers or
skip). When the dest parameter is null, the result is returned in a newly
allocated object. When the timer has been created or rescheduled (see Timer.
reschedule) using an instance of RelativeTime for its time parameter then
it will return the sum of the current time and the RelativeTime remaining
time before the timer is expected to fire. The clock association of the returned
time is the clock on which this timer is based.

Since RTSJ 1.0.1

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher ()

Description

Obtain the current dispatcher for this event.

RTSJ 2.0 (Final Draft) 327

10 Clocks and Timers Timer

setDispatcher(TimeDispatcher)
Signature
public javax.realtime.TimeDispatcher
setDispatcher (TimeDispatcher dispatcher)

Description

Change the current dispatcher for this event. When dispatcher is null, the
default dispatcher is restored.

isActive

Signature
public boolean
isActive()

Description

Determines the activation state of this happening, i.e., it has been started.

Returns
true when active, false otherwise.

Since RTSJ 2.0

isRunning
Signature
public boolean
isRunning ()
throws StaticIllegalStateException

Description

Determines if this is active and is enabled such that when the given time occurs
it will fire the event. Given the Timer current state it answers the question "Is
firing expected?’.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

Returns
true when the timer is active and enabled; otherwise false, when the timer has
either not been started, it has been started but it is disabled, or it has been
started and is now stopped.

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters<?>
createReleaseParameters()

328 RTSJ 2.0 (Final Draft)

Timer javazx.realtime 10.3

throws StaticIllegalStateException

Description

Creates a ReleaseParameters object appropriate to the timing characteristics
of this event. The default is the most pessimistic: AperiodicParameters. This
is typically called by code that is setting up a handler for this event that will fill
in the parts of the release parameters for which it has values, e.g. cost.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

Returns
a newly created ReleaseParameters object.

enable
Signature
public void
enable ()
throws StaticIllegalStateException

Description

Re-enables this timer after it has been disabled. (See Timer.disable().) When
the Timer is already enabled, this method does nothing. When the Timer is
not-active, this method does nothing.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

disable

Signature
public void
disable()
throws StaticIllegalStateException

Description

Disables this timer, preventing it from firing. It may subsequently be re-enabled.
When the timer is disabled when its fire time occurs, then it will not release its
handlers. However, a disabled timer created using an instance of RelativeTime
for its time parameter continues to count while it is disabled, and no changes
take place in a disabled timer created using an instance of AbsoluteTime. In
both cases the potential firing is simply masked, or skipped. When the timer is
subsequently re-enabled before its fire time or(?) it is enabled when its fire time
occurs, then it will fire. It is important to note that this method does not delay
the time before a possible firing. For example, when the timer is set to fire at
time 42 and the disable() is called at time 30 and enable() is called at time
40 the firing will occur at time 42 (not time 52). These semantics imply also that

RTSJ 2.0 (Final Draft) 329

10 Clocks and Timers Timer

firings are not queued. Using the above example, when enable was called at time
43 no firing will occur, since at time 42 this was disabled. When the Timer is
already disabled, whether it is active or inactive, this method does nothing.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

start
Signature
public void
start ()
throws StaticIllegalStateException

Description

Starts this timer. A timer starts measuring time from when it is started; this
method makes the timer active and enabled.

Throws
StaticIllegalStateException—when this Timer has been destroyed, or when
this timer is already active.

start(boolean)
Signature
public void
start(boolean disabled)
throws StaticIllegalStateException

Description

Starts this timer. A timer starts measuring time from when it is started. When
disabled is true starts the timer making it active in a disabled state. When
disabled is false this method behaves like the start () method.

Parameters
disabled—When true, the timer will be active but disabled after it is started.
When false this method behaves like the start () method.
Throws
StaticIllegalStateException—when this Timer has been destroyed, or when
this timer is active.

Since RTSJ 1.0.1

start(PhasingPolicy)
Signature
public void
start (PhasingPolicy phasingPolicy)

330 RTSJ 2.0 (Final Draft)

Timer javazx.realtime 10.3

throws LateStartException,
StaticIllegalArgumentException

Description

Starts the timer with the specified PhasingPolicy.

Parameters
phasingPolicy—Determines what happens when the start is too late.
Throws
LateStartException—when this method is called after its absolute start time and
the phasingPolicy is PhasingPolicy.STRICT PHASING.

StaticIllegalArgumentException—when the start time of this timer is not an
absolute time, or phasingPolicy is null or, when this in not a periodic timer,
ADJUST _FORWARD or ADJUST BACKWARD.

Since RTSJ 2.0

start(boolean, PhasingPolicy)
Signature
public void
start(boolean disabled,
PhasingPolicy phasingPolicy)
throws LateStartException,
StaticIllegalArgumentException

Description

Starts the timer with the specified PhasingPolicy and the specified disabled
state.

Parameters
disabled—It determines the mode of start: true for enabled and false for disabled
for consistency with Timer.start(boolean).
phasingPolicy—It determines what happens when the start is too late.
Throws
LateStartException—when this method is called after its absolute start time and
the phasingPolicy is PhasingPolicy.STRICT_PHASING.
StaticIllegalArgumentException—when the start time of this timer is not an
absolute time, or phasingPolicy is null or, when this in not a periodic timer,
ADJUST_FORWARD or ADJUST_BACKWARD.

Since RTSJ 2.0

stop

Signature
public boolean
stop()

RTSJ 2.0 (Final Draft) 331

10 Clocks and Timers

throws StaticIllegalStateException

Description

Stops a timer when it is active and changes its state to inactive and disabled.

Throws
StaticIllegalStateException—when this Timer has been destroyed.

Returns
true when this was enabled and false otherwise.

reschedule(HighResolutionTime)
Signature
public void
reschedule (HighResolutionTime<?> time)
throws StaticIllegalStateException,
StaticIllegalArgumentException

Description

Changes the scheduled time for this event. This method can take either an
AbsoluteTime or a RelativeTime for its argument, and the Timer will behave
as if created using that type for its time parameter. The rescheduling will take

place between the invocation and the return of the method.

Note that while the scheduled time is changed as described above, the
rescheduling itself is applied only on the first firing (or on the first skipping
when disabled) of a timer’s activation. When reschedule is invoked after the
current activation timer’s firing, then the rescheduled time will be effective
only upon the next start or startDisabled command (which may need to be

preceded by a stop command).

When reschedule is invoked with a RelativeTime time on an active timer
before its first firing/skipping, then the rescheduled firing/skipping time is relative

to the time of invocation.

Parameters

time—The time to reschedule for this event firing. When time is null, the previous

time is still the time used for the Timer firing.
Throws

StaticIllegalArgumentException—when time is a negative RelativeTime

value.

StaticIllegalStateException—when this Timer has been destroyed.

10.4 Rationale

Clocks differ because of monotonicity, synchronization, jitter, stability, accuracy,
precision, and resolution. There are many possible subclasses of clocks: realtime

clocks, user time clocks, simulation time clocks, wall clocks.

332 RTSJ 2.0 (Final Draft)

Rationale 10.4

The idea of using multiple clocks may at first seem strange, but it enables the
developer to accommodated systems with different resources. For instance, most
systems have an on board clock, which is provided as the default clock through the
operation system. This clock is the natural clock to use for the RTSJ default clock,
but this clock may not be stable or accurate enough for a given application. The
clock API can be used to provide a second realtime clock that is based on an external
clock source which can provide the needed accuracy and stability. For example, this
could be taken from an external board with a hardware oscillator, a timing circuit
that can generate an interrupt, and a small battery. A more exotic example would
be to associate a clock with an object that rotates, where one degree is a second, a
minute, or an hour depending on the rotation speed and accuracy needed, so long
as the clock can trigger something at some fraction of a turn. Without a triggering
mechanism, it could still be a chronograph.

The importance of the use of one-shot timers for time-out behavior and the
vagaries in the execution of code prior to starting the timer for short time-outs
dictate that the triggering of the timer should be guaranteed. The problem is
exacerbated for periodic timers, where the importance of the periodic triggering
outweighs the precision of the start time. In such cases, it is also convenient to allow,
for example, a relative time of zero to be used as the start time.

Clock resolution is a complicated topic, and clock implementations may have
differing precision for different purposes. For example, a clock for interacting with
humans need much less precision than for controlling the opening and closing of
values on an internal combustion engine. In this case, their relationship to wall clock
time may vary as well.

The precision of time returned by a hardware clock device when queried may be
greater than the precision at which that device can supply interrupts. (Consider, for
example, a high precision off-chip realtime clock device connected via a shared serial
bus.) A different device may provide pulse-per-second interrupts of very high precision,
but be unable to interrupt on any other interval. The RTSJ Clock class provides
two representation of precision: getDrivePrecision() and getQueryPrecision
inherited from Chronograph. Clocks should behave as if their tick (setAlarm())
precision is the same as returned by getResolution().

RTSJ 2.0 (Final Draft) 333

10 Clocks and Timers

334 RTSJ 2.0 (Final Draft)

Chapter 11

Alternative Memory Areas

Conventional Java uses a single heap for storing all objects. The thread stacks
hold only primitive objects and references to objects. This is fine for desktop and
server systems, where there are no realtime, locality, or isolation requirements. Even
for most realtime systems, a single heap is usually also sufficient when used in
conjunction with a deterministic garbage collector. For all other situations, this
specification defines classes directly related to memory and memory management.
These classes provide a more generalized means of memory management than is
available in a conventional Java VM.

In conventional Java, all of the memory needed for the allocation of an object is
taken from a garbage-collected heap. The RTSJ generalizes the concept of a heap
to that of a memory area. A memory area consists of two components: a Java
object that manages the memory area and the allocation area, which is the actual
region of memory from which objects are allocated. Every thread and schedulable
has a current allocation context. This context is the memory area which manages
the allocation area used when the thread or schedulable requests memory allocation
using the Java new operator.

There are three types of memory area, distinguished by object lifetime semantics,
defined by the RTSJ.

o Heap memory—the Java heap. Unreachable objects are collected by a garbage
collector. Individual schedulables can specify their rate of allocation of objects
on the heap.

e Immortal memory—an area defined by the JVM in which allocated objects
might never be collected. Access to the memory area must be independent of
garbage collection activity. Individual schedulables can specify the maximum
amount of memory they need in immortal memory.

e Scoped memory—multiple areas that can be created by the application; objects
are collected in scoped memory when there are no schedulables currently active
in that area and it is not pinned. These allow objects with well-defined lifetimes
to be created and efficiently collected in an easily-identified group.

Given that objects can now be created in multiple memory areas, it is necessary
to ensure that an object cannot reference another object that might be collected at
an earlier time. For example, an object in immortal memory (that is never collected)
must not be allowed to reference an object in scoped memory. This is because the

335

11 Alternative Memory Areas

scoped memory object will be collected when the scope is not pinned and there is no
schedulable active in its associated allocation area, rendering the immortal object’s
reference to the scoped memory object invalid. For this reason, the RTSJ defines some
memory assignment rules that are checked by the JVM on every object assignment.
If the program violates the memory assignment rules, an exception is thrown.

Pinnable Memory

RTSJ 2.0 adds a new type of scoped memory called pinnable memory. This memory
area is designed to support the producer consumer pattern. Here one set of tasks is
responsible for producing some data to be consumed by another set of tasks. Usually,
the second set cannot enter the area until the first is finished. However, with normal
scopes, this would result in the data being lost. A developer must have a special
thread, referred to as a wedge thread, to keep the scope alive. With pinnable memory,
a wedge thread is no longer necessary. A pinnable scope can simply be pinned. The
area is not collected until no threads are in the scope and the scope is unpinned.

Stacked Memory

RTSJ 2.0 also adds a new type of scoped memory called stacked memory. Stacked
memory enables systems to maintain predictable memory performance over a long
period of time while still releasing memory at runtime. The older scoped memory
interfaces left sufficient ambiguity in the specification that the user may not have been
able to sufficiently characterize internal and external fragmentation upon creating or
destroying scoped memory areas. The StackedMemory class provides a safe interface
for creating and releasing scopes with a set of rules under which the VM must
guarantee fragmentation-free behavior with predictable memory overhead. These
guarantees are provided by constraining the order in which an application may enter
StackedMemory areas, as well as the manner in which they may be arranged on the
scope stack. These constraints are enforced by the implementation.

Memory Groups

Analogous to ProcessingGroups, memory groups provide a means of partitioning
memory between groups. Each group may have its use of backing store limited.
Currently, only backing store is considered, but future version of the specification
may do more.

Summary

In summary, the classes and interfaces defined in this chapter enable
1. the definition of regions of memory outside of the conventional Java heap;
2. the definition of regions of scoped memory, that is, memory regions with a
limited lifetime;
3. the definition of regions of memory containing objects whose lifetime matches
that of the application;

336 RTSJ 2.0 (Final Draft)

Definitions 11.1

4. the specification of maximum memory area consumption and maximum alloca-
tion rates for individual schedulables;

5. the programmer to query information characterizing the behavior of the garbage
collection algorithm, and to some limited ability, alter the behavior of that
algorithm.

11.1 Definitions

Allocation Context — An abstraction representing memory from which a new
object can be allocated. In conventional Java, this is the Java heap. The
MemoryArea class is the base class representing all allocation contexts in the
RTSJ, of which the heap (represented by HeapMemory) is just one type.

Current Allocation Context — The memory area which will be used when object
allocation is requested in the currently active thread of control.

Allocation Area— The area of memory that is managed by a MemoryArea from
which objects are allocated. The allocation area for an extraheap memory area
is logically and physically separate from the Java heap.

Backing Store — A range of memory addresses from which the allocation area of a
MemoryArea is drawn. There are several backing stores: the global backing store
for general scoped memory, the host backing store used for stacked memory;,
which is taken directly or indirectly from the global backing store, and the
backing stores for the default heap and immortal memory areas’.

Explicit Initial Memory Area— A memory area given to a constructor of a
Schedulable type, when it is created.

Execution Context — A memory area upon which execution is dependent. This
includes areas in which a Schedulable or ActiveEvent is allocated. In order
to prevent references from becoming invalid, the memory associated with an
execution context may not be reclaimed. The following conditions cause a
memory area to be an execution context:

1. it contains a Thread instance that has been started but have not
terminated (including the RealtimeThread instances contained by
ActiveEventDispatcher instances),

2. it contains an ActiveEvent instance that is active,

. it contains a firable asynchronous event handler?,

4. it is on the scope stack inherited by one of the schedulable or event types
listed above from the schedulable that created it, or

5. it is on the scope stack of an active schedulable beyond its inherited stack.

Default Initial Memory Area— The initial memory area for a schedulable is
default when it is the memory area in which the schedulable was created.

Inner Memory Area— A memory area on a scope stack that is closer to the
current allocation context of the stack’s Schedulable than another memory
area. [t can also refers to a scoped memory with a greater nesting count in a
scoped memory tree.

w

IThe backing store for the default heap and immortal memory areas are identical to their
allocation contexts
2Defined in Section 8.1

RTSJ 2.0 (Final Draft) 337

11 Alternative Memory Areas

Memory Assignment Rules — The rules for when a reference to an object may
be saved in another object. In general, an object created in a memory area may
only be stored in the current memory area or a more deeply nested memory
area (scoped memory). For these rules, instances of @code HeapMemory and
ImmortalMemory are equivalent.

Outer Memory Area— A memory area on a scope stack that is further from the
current allocation context of the stack’s Schedulable than another memory
area. It can also refers to a scoped memory with a greater nesting count in a
scoped memory tree.

Portal — A location for storing a reference to an object allocated in an instance
of ScopedMemory settable on that instance. A portal can be used to pass
information between instances of Schedulable executing in a given area.

Perennial Memory — all memory areas whose contents can be unexceptionally
referenced. In other words, any memory area can store a reference to an object
stored in one of these areas. This includes all concrete memory areas in the
core package. Only memory areas of this type can be a root for a scope stack.

Primordial Scope — An imaginary scope used as the parent for an instance of
ScopedMemory which is in use and has been entered directly from a perennial
memory. It is used distinguish between instances of ScopedMemory area that
has no parent because it is not active on any scope stack and one that has
no parent because it is the first ScopedMemory area on a scope stack. Hence,
there is no memory area that corresponds to the primordial scope.

Root StackedMemory — A StackedMemory that has a parent which is not of type
StackedMemory.

Scope Stack — A sequence of the memory areas an instance of Schedulable has
entered, in order of entry, where the first entered is the bottom of the stack
and the last entered is the top. Not all memory areas on a scope stack are
scoped memories.

Scope Tree — A set of scoped memories with the same root scoped memory. The
transitive closure of the parents of any scope in the tree contains that root
scoped memory.

Realtime Task — Any task except instances of java.lang.Thread. Instances of
Realtime, AsyncBaseEventHandler, and Dispatcher are all realtime tasks.

11.2 Semantics

The classes MemoryArea, HeapMemory, and ImmortalMemory are part of the base
module and the semantics below that apply to those modules must be fulfilled by
all RTSJ implementations. The rest of the features described here belong to the
Alternative Memory Areas Module introduced in Section 3.2.2.2 and are only required
for implementations that include that module. The following lists define the general
semantics of the classes of this section. Semantics of particular classes, constructors,
methods, and fields are detailed further on, in the sections describing those classes,
constructors, methods, and fields.

338 RTSJ 2.0 (Final Draft)

Semantics 11.2

11.2.1 Allocation Execution Time

The following two requirements apply to allocation in any memory area, including
the heap.

1. All nondeprecated MemoryArea classes are required to have allocation times
linear in the size of the object being allocated. Ignoring performance variations
due to hardware caches or similar optimizations and ignoring the execution
time of any static initializers, the linear time attribute requires the execution
time of new to be bounded by a polynomial, f(n), where n is the size of the
object and for all n > 0, f(n) < Cn for some constant C.

2. The execution time of object constructors and time spent in class loading and
static initialization are not governed by the bounds on object allocation in
this specification, but setting default initial values for fields in the instance (as
specified in The Java Virtual Machine Specification, Second Edition, section
2.5.1, “Each class variable, instance variable, and array component is initialized
with a default value when it is created.”) is considered part of object allocation
and included in the time bound.

11.2.2 Allocation Context

The following requirements apply to the allocation context represented by a memory
area.

1. A memory area is represented by an instance of a subclass of the MemoryArea
class. When a memory area, m, is entered by calling m.enter (or another
method from the family of enter-like methods defined in MemoryArea or its
subclasses), m becomes the allocation context of the current schedulable object.
When control returns from the enter method, the allocation context is restored
to the value it had immediately before enter was called.

2. When a memory area, m, is entered by calling m’s executeInArea method,
m becomes the current allocation context of the current schedulable. When
control returns from the executeInArea method, the allocation context is
restored to the value it had before executeInArea was called.

3. The initial allocation context for a schedulable is the memory area that was
designated the nitial memory area when the schedulable was constructed.
This initial allocation context becomes the current allocation context for that
schedulable when the schedulable object first becomes eligible for execution.
For instances of AsyncBaseEventHandler, the initial allocation context is the
same on each release; for realtime threads, in releases subsequent to the first,
the allocation context is the same as it was when the realtime thread became
blocked-for-release-event.

4. All object allocation through the new keyword will use the current allocation
context, but note that allocation can be performed in a specific memory area
using the newInstance and newArray methods on MemoryArea.

5. Instances of schedulables behave as if they stored their memory area context
in a structure called the scope stack. This structure is manipulated by the
instantiation of a schedulable, and the following methods from MemoryArea
and its subclasses: all the enter and joinAndEnter methods, executeInArea,

RTSJ 2.0 (Final Draft) 339

11 Alternative Memory Areas

and both newInstance methods. See the semantics in Maintaining the Scope
Stack for details.

6. The executeInArea, newInstance, and newArray methods, when invoked
on an instance of ScopedMemory require that instance to be on the current
schedulable’s scope stack.

7. An instance of ScopedMemory is said to be in use when it has a positive
reference count as defined by semantic 1 below.

11.2.3 Backing Stores

Every MemoryArea has a notional backing store, which is a range of memory addresses
from which its allocation area, i.e., the memory range from which objects in it are
allocated, is drawn. The addresses are hidden by the virtual machine and RTSJ
implementation. The RTSJ gives the programmer tools to manage the backing store
as a limited system resource via the ScopedMemory class and its descendants and
the ScopedMemoryParameters class.

Besides the backing stores for the memory areas provided by the core module,
heap and immortal, whose backing stores are fixed or at least predefined at startup,
two types of backing store may be available for allocating to newly created memory
areas: global backing store and physical backing store. All instances of ScopedMemory
other than of type StackedMemory and root instance of StackedMemory take their
backing stores from the global backing store that represents system memory available
for use as RTSJ memory area allocation areas.

Access to this finite global resource by individual instances of Schedulable is
controlled by their associated ScopedMemoryParameters. Once a given Schedul-
able’s budget of global backing store has been allocated, attempts to allocate from
the global backing store over that budget will result in an exception.

11.2.4 The Parent Scope

The following requirements apply to a scope’s parent.

1. Instances of ScopedMemory have special semantics, including a definition of
parent. If a ScopedMemory object is neither in use nor the initial memory area
for a schedulable, it has no parent scope.

(a) When a ScopedMemory object becomes in use, its parent is the nearest
ScopedMemory object outside it on the current scope stack. If there is no
outside ScopedMemory object in the current scope stack, the parent is the
primordial scope which is not actually a memory area, but only a marker
that constrains the parentage of ScopedMemory objects.

(b) At construction of a schedulable, if the initial memory area has no parent,
the initial memory area is assigned the parent it will have when the
schedulable is in execution. This rule determines the initial memory area’s
parent until the schedulable object is de-allocated or, in the case of a
RealtimeThread, it completes execution.

2. Instances of ScopedMemory must satisfy the single parent rule, which requires
that each scoped memory has a unique parent as defined in semantic 1.

340 RTSJ 2.0 (Final Draft)

Semantics 11.2

11.2.5 Memory Areas and Schedulables

The following requirements govern the relationship between memory and execution.

1. Pushing a scoped memory onto a scope stack is always subject to the single
parent rule.

2. Each schedulable has a default initial memory area which is that object’s
initial allocation context. The default initial memory area is the current
allocation context in effect during execution of the schedulable’s constructor,
but a schedulable may supply constructors with an explicit initial memory area
that override the default.

3. A Java thread cannot have a scope stack; consequently it can only be created
and execute within heap or immortal memory. The thread starts execution
with its allocation context set to the memory area containing the Thread
object. An attempt to create a Java thread in a scoped memory area throws
IllegalAssignmentError.

4. A Java thread may use executeInArea, and the newInstance and newArray
methods from the ImmortalMemory and HeapMemory classes. These methods
enable it to execute with an immortal current allocation context, but semantic
of item 3 above applies even during execution of these methods.

11.2.6 Scoped Memory Reference Counting

The following requirements apply to references to scoped memory.

1. Each instance of the class ScopedMemory, or its subclasses, must maintain a
reference count which is greater than zero when and only when it is an exzecution
context or more exactly, the reference count is the number of causes for a given
memory area to be an execution context.

2. Each instance of the PinnableMemory class must support a pinned count. This
count is incremented for each call of the pin method and decremented for each
call of the unpin method. The count is always greater than or equal to zero
(that is, calling the unpin method has no effect if the count equals zero).

3. When the reference count for an instance of the class ScopedMemory is ready
to be decremented from one to zero and the pinned count (if present) is
equal to zero, all unfinalized objects within that area are considered ready for
finalization.

(a) When after the finalizers for all such unfinalized objects in the scoped
memory area run to completion, the reference count for the memory area
is still ready to be decremented to zero, and the pinned count is still equal
to zero, any newly created unfinalized objects are considered ready for
finalization and the process is repeated until no new objects are created or
the scoped memory’s reference count is no longer ready to be decremented
from one to zero.

(b) When the scope contains no unfinalized objects and its reference count is
ready to be decremented from one to zero and the pinned count is equal
to zero, any asynchronous event in the scope is no longer treated as a
source of fireability for asynchronous event handlers.

RTSJ 2.0 (Final Draft) 341

11 Alternative Memory Areas

(¢c) When that action causes object creation in the scope, the finalization
process resumes from the beginning;

(d) When the reference count is no longer ready to be decremented to zero,
the finalization process terminates.

(e) Otherwise, the reference count is decremented to zero and the memory
scope is emptied of all objects.

(f) The process of scope finalization starts when the scope’s reference count
is about to go to zero with a zero pin count and continues until the scope
is emptied or the process is terminated because the reference count is no
longer about to go to zero.

4. When the pinned count is ready to go to zero and the reference count is zero,
all unfinalized objects within that area are considered ready for finalization,
and the same semantics as 3 above applies.

5. The RTSJ implementation must behave effectively as if during the finalization
process the schedulable executing the finalization of a scope holds a synchronized
lock that must also be acquired

(a) to increase the reference count when entering the scope,

(b) to increase the reference count during startup for a thread with the
finalizing scope as its explicit initial memory area, and

(¢) to increase the reference count while making firable an asynchronous event
handler with the scope as its explicit initial memory area.

6. Although the steps in scope finalization are ordered, no order is specified
for finalization of objects or for disarming fireability of asynchronous event
handlers. The objects may be processed in any order or concurrently, but at no
time may a scope’s reference count be reduced to zero while it has one or more
child scopes. This semantic is a special case of the finalization implementation
specified in The Java Language Specification, second edition, section 12.6.1.

7. Finalization may start when all unfinalized objects in the scope are ready for
finalization. Finalizers are executed with the current allocation context set to
the finalizing scope and are executed by the schedulable in control of the scope
when its reference count is ready to be decremented from one to zero. If finalizers
are executed because a realtime thread terminates or an AsyncEventHandler
becomes unfirable, that realtime thread or AsyncEventHandler is considered
in control of the scope and must execute the finalizers.

8. From the time objects in a scope are deleted until the portal on the scope
is successfully set to a reference value (not null) with setPortal, the value
returned by getPortal on that scoped memory object must be null.

11.2.7 Immortal Memory

Immortal memory is provides an ability to run without a heap. This is only really
useful when the alternate memory module is used. The following requirements apply
to immortal memory.
1. Objects created in any immortal memory area are unexceptionally referencable
from all Java threads, and all schedulables, and the allocation and use of objects
in immortal memory is never subject to garbage collection delays.

342 RTSJ 2.0 (Final Draft)

Semantics 11.2

2.

An implementation may execute finalizers for immortal objects when it deter-
mines that the application has terminated. Finalizers will be executed by a
thread or schedulable whose current allocation context is not scoped memory.
Regardless of any call to runFinalizersOnExit, except as required to support
the base Java platform, the system need not execute finalizers for immortal
objects that remain unfinalized when the JVM begins termination.

The following addition requirements take effect when the alternate memory
module is used, effectively, when immortal meory has a size greater than zero.

3.

Class objects, the associated static memory, and interned Strings behave
effectively as if they were allocated in immortal memory with respect to
memory reference and assignment rules, and preemption delays by schedulables
which may not access the heap. This means that class objects may not be
moved once created.

. When classes allocated in heap memory may be moved by the grabage collector,

static initializers are executed effectively as if the current thread performed
ImmortalMemory.instance() .executeInArea(r) where r is a Runnable that
executes the <clinit> method of the class being initialized.

. These last two rules alway apply for classes in a package annotated with the

ClassAllocation annotation and has a value of MemoryAreaType. IMMORTAL,
which is the default.

Classes allocated in pavkages annotated with the ClassAllocation annotation
and a value of MemoryAreaType.HEAP are always allocated on the heap.
When the value is MemoryAreaType.Perennial, the implementor can decide,
based on at least grabage collector behavior, which area to use for class
allocation and initialization,”

11.2.8 DMaintaining Referential Integrity

The following rules apply to references to objects in scoped memory.

1.

Memory assignment rules placed on reference assignments prevent the creation
of dangling references, and thus maintain the referential integrity of the Java
runtime. The restrictions are listed in the following table. Both Immortal-

Table 11.1: Memory Area Referencing Restrictions

Stored in | Reference | Reference Reference to Object | null
Area to Object | to Object in | in Scoped

in Heap Immortal
Perennial-| Permit Permit Forbid Permit
Memory
Scoped- Permit Permit Permit from same or less | Permit
Memory deeply nested scope
Local Permit Permit Permit Permit
Variable

3The value MemoryAreaTye .SCOPED is undefined and provided for future extension.

RTSJ 2.0 (Final Draft)

11 Alternative Memory Areas

Memory and HeapMemory are types of PerennialMemory. All subclasses of
ScopedMemory and PerennialMemory are equivalent to their respective base
class for the purposes of this table.

2. An implementation must ensure that the above checks are performed for each
assignment statement before the statement is executed, either by runtime
checks or by static analysis of the application logic. Checks for operations on
local variables are not required because a potentially invalid reference would
be captured by the other checks before it reached a local variable.

11.2.9 Object Initialization

The current allocation context in a constructor for an object is the memory area in
which the object is allocated. For new, this is the current allocation context when
new was called. For members of the m.newInstance family, the current allocation
context is memory area m.

11.2.10 Maintaining the Scope Stack

This section describes maintenance of a data structure that is called the scope stack.
Implementations are not required to use a stack or implement the algorithms given
here. It is only required that an implementation behave with respect to the ordering
and accessibility of memory scopes effectively as if it implemented these algorithms.
The scope stack is implicitly visible through the memory assignment rules, and the
stack is explicitly visible through the visitRootScopes (Consumer<ScopedMemory>)
and visitNestedScopes (Consumer<ScopedMemory>) methods on ScopedMemory.
Four operations affect the scope stack: the enter methods defined in MemoryArea
and its subclasses, instantiation of a new Schedulable, the executeInArea method
in MemoryArea, and the new instance methods in MemoryArea.
1. The memory area at the top of a schedulable object’s scope stack is the
schedulable’s current allocation context.
2. For an instance of Schedulable, ny, created by task ¢, the scope stack of n, is
determined by both ¢ and n,:

(a) when n; is created in a heap or immortal memory area, n; is created with
a scope stack containing only that heap or immortal memory area,

(b) when the memory area of ¢ is a ScopedMemory instance, n; acquires a
copy of the scope stack associated with ¢ at the time n; is constructed,
including all entries from up to and including the memory area containing
ng; and

(¢) when n; has an explicit initial memory area, ima, then ima is pushed
on n;’s newly-created scope stack, e.g., a task executing with the scope
stack A — B — C creates a new Schedulable instance s with initial
memory area D which is not currently in use, s gets the scope stack
A—-B—=C—=D.

3. When a memory area, ma is entered by calling a ma.enter method, ma is pushed
onto the scope stack of the current schedulable and becomes its allocation
context. When control returns from the enter method, the allocation context

344 RTSJ 2.0 (Final Draft)

=N =

OO0 U WN -

— =
W N = O

[—
[GETAN

Semantics 11.2

is popped from the scope stack

4. When a memory area, ma, is entered by calling ma’s executeInArea method or
one of the ma.newInstance methods, the scope stack before the method call

is preserved and replaced with a scope stack constructed as follows:

(a) when ma is a scoped memory area, the new scope stack is a copy of the

schedulable’s previous scope stack up to and including ma, and

(b) when ma is not a scoped memory area, the new scope stack includes only

ma.

When control returns from the executeInArea method, the scope stack is
restored to the value it had before ma.executeInArea or ma.newInstance was

called.

For the purposes of these algorithms, stacks grow up. One should also note that

the representative algorithms ignore important issues like freeing objects in scopes.

1. In every case, objects in a scoped memory area are eligible to be freed when
the reference count for the area is zero after finalizers for that scope are run.
2. Informally, any objects in a scoped memory area must be freed and their
finalizers run before the reference count for the memory area is incremented

from zero to one.

11.2.11 The enter Method

For ma.enter(logic):

push ma on the scope stack belonging to the current schedulable
-- which may throw ScopedCycleException

execute logic.run method

pop ma from the scope stack

11.2.12 The executeInArea or newInstance Methods

For ma.executeInArea(logic), ma.newInstance(), or ma.newArray():

if ma is an instance of PerennialMemory,
start a new scope stack containing only ma.
make the new scope stack the scope stack for the current
schedulable.
else if ma is in the scope stack for the current schedulable,
start a new scope stack containing ma and all
scopes below ma on the scope stack.
make the new scope stack the scope stack for the current
schedulable.
else
throw InaccessibleAreaException, execute logic.run,
or construct the object.
restore the previous scope stack for the current
schedulable.
discard the new scope stack.
end

RTSJ 2.0 (Final Draft)

345

O© 0O Tk W+~

11 Alternative Memory Areas

11.2.13 Constructor Methods for Schedulables

For construction of a schedulable in memory area cma with initial memory area of
ima:

if cma is an instance of PerennialMemory,
create a new scope stack containing cma.
else
start a new scope stack containing the entire
current scope stack.

if ima !'= cma
push ima on the new scope stack
-- which may throw ScopedCycleException.

The above pseudocode illustrates a straightforward implementation of this specifi-
cation’s semantics, but any implementation that behaves effectively like this one with
respect to reference count values of zero and one is permissible. An implementation
may be eager or lazy in maintenance of its reference count provided that it correctly
implements the semantics for reference counts of zero and one.

11.2.14 The Single Parent Rule

Every push of a scoped memory type on a scope stack must obey the single parent
rule. This enforces the invariant that every scoped memory area has no more than
one parent.

The parent of a scoped memory area is identified by the following rules:

1. when the memory area is not currently on any scope stack, it has no parent;

2. when the memory area is the first scoped memory area on a scope stack,

i.e., it was entered from an instance of a PerennialMemory, its parent is the
primordial scope,

3. otherwise, the parent is the first scoped memory area outside it on the scope

stack, i.e., the scope from which this scope was entered.

Only scoped memory areas are visible to the single parent rule.

The operational effect of the single parent rule is that when a scoped memory
area has a parent, the only legal change to that value is to null, i.e.,“no parent.”
Thus an ordering imposed by the first assignments of parents of a series of nested
scoped memory areas is the only nesting order allowed until control leaves the scopes;
then a new nesting order is possible. Thus, a schedulable attempting to enter a scope
can only do so by entering in the established nesting order.

11.2.15 Scope Tree Maintenance

The single parent rule is enforced effectively as if there were a tree with the primordial
scope at its root, and other nodes corresponding to every scoped memory area
currently on any schedulable’s memory area stack.

Each scoped memory has a reference to its parent memory area, ma.parent.
The parent reference may indicate a specific scoped memory area, no parent, or the
primordial parent.

346 RTSJ 2.0 (Final Draft)

1
2
3
4
)
6

7

8

9
10
11
12
13
14
15
16
17

O© 0O UL WhN

w N

Semantics 11.2

When a scoped memory area is the explicit initial memory area of a schedulable
that has not terminated, it is referred to as reserved. A reserved area with a reference
and pin count of zero does not have any objects allocated in it, but it is in a scope
stack as long as the schedulable is active. Since it is possible for more than one
schedulable to have the same explicit initial memory area, the memory area must
behave as if a reference count for reservation is also maintained.

11.2.15.1 Pushing a MemoryArea onto the Scope Stack

The following procedure could be used to maintain the scope tree and ensure that
push operations on a schedulable’s or ISR’s memory area stack does not violate the
single parent rule.

preconditions

ma.parent is set to the correct parent (either a scoped
memory area or the primordial scope) or to null (no parent).

t.scopeStack is the scope stack of the current schedulable or
ISR

Action

if ma is scoped,
parent = findFirstScope(t.scopeStack) .
if ma.parent == null
ma.parent = parent.
else if ma.parent != parent
throw ScopedCycleException.
else
t.scopeStack.push(ma) .

findFirstScope is a convenience function that looks down the scope stack for
the next entry that is a reference to an instance of ScopedMemoryArea.

findFirstScope(scopeStack)
{
for s = top of scope stack to bottom of scope stack
{
if s is an instance of scopedMemory
return s.

}

return primordial scope.

3

11.2.15.2 Popping a MemoryArea off the Scope Stack

ma = t.scopeStack.pop.
if ma is scoped
if !'(ma.in_use || (ma.reserve_count > 0))

RTSJ 2.0 (Final Draft) 347

O 0O Tk~ WhN

N U W~

11 Alternative Memory Areas

ma.parent = null.

11.2.15.3 Reservation Management

Reservation management is separate from managing the scope stack for a schedulable
or ISR. Reservations are maintained in order to constrain the code locations at
which an exception may be thrown due to violations of the single parent rule
with respect to explicit initial scoped memory areas (EISMAs). With the RTSJ
reservation management semantics, such exceptions will always be thrown at the
explicit invocation of configuration methods. When a realtime thread with an EISMA
is created or an ASEH with an EISMA is added to an ASE, the following happens
atomically with respect to other tasks in the VM:

ma = t.eisma // explicit initial scoped memory area

if (ma.parent == null),
ma.parent = findFirstScope(t.scopeStack)
ma.reserve_count++. // should now be equal one
else if (ma == findFirstScope(t.scopeStack)),
ma.reserve_count++. // should now be greater than zero
else
throw ScopedCycleException.

When a realtime thread with an EISMA terminates or an ASEH is removed from
an ASE, then following happens atomically with respect to other tasks in the VM:

ma = t.eisma // explicit initial scoped memory area

ma.reserve_count--.

if ((ma.reserve count == 0) &&
(ma.enter_count == 0) &&
(ma.pin_count == 0))

ma.parent = null.

11.2.16 Stacked Memory

A StackedMemory area represents both a memory area providing ScopedMemory
semantics and an explicit backing store from which its allocation area is drawn. The
backing store may be further subdivided into additional allocation areas and backing
stores. Such divisions behave as if new allocation areas are allocated contiguously
from the bottom of the container, while new backing stores are allocated contiguously
from the top, with allocation areas and backing stores meeting when the outer
backing store is completely occupied.

11.2.16.1 Avoiding Backing Store Fragmentation

StackedMemory backing stores are explicitly created and sized, and have well-defined
lifetimes similar to objects in a ScopedMemory area. A StackedMemory instance

348 RTSJ 2.0 (Final Draft)

Semantics 11.2

can be created as either a host, which has its own backing store, or a leaf, which
uses all of its backing store for allocation and does not host any other instance of
StackedMemory. A leaf can become a host by reducing the size of its allocation area,
leaving the rest for hosting. A host or leaf created in another stacked memory is
referred to as a guest. When a StackedMemory instance is created in an allocation
context other than StackedMemory, it is called a root StackedMemory. In this case,
its backing store is drawn from the global backing store or the physical backing store.
Usually, a root backing store is also a host. A root StackedMemory’s backing store
will be freed under the same conditions as other host StackedMemory backing stores,
but applications should not assume that the implementation provides any guarantees
with respect to fragmentation, should this occurs. When a StackedMemory object is
created in another StackedMemory’s allocation context, it may be created as either a
host or leaf, as illustrated in Figure 11.1. Either way, its backing store is drawn from
its parent area’s backing store, and its allocation area is created in the newly-divided
backing store. When it is created as a leaf, all of its backing store is used for
allocation.

Object lifetimes for objects allocated in StackedMemory allocation contexts are
the same as those in ScopedMemory allocation contexts. When a StackedMemory
object itself is finalized, its allocation area is returned to the backing store from which
it was drawn, and in the case of host StackedMemory areas, the associated backing
store is also returned to the parent’s backing store. Additionally, the allocation area of
a StackedMemory can be resized under certain conditions. These semantics allow the
memory represented by a root StackedMemory backing store to be partitioned and
repartitioned as the application requires without danger of fragmentation and without
requiring memory allocation external to the container to track the partitioning.

In order to preserve the fragmentation-free nature of this contract, certain rules
are enforced by the infrastructure. Those rules are as follows:

1. a guest StackedMemory area can only be entered by a schedulable when its
allocation context is the same as the allocation context in which that Stacked-
Memory area’s object was created;

2. a guest StackedMemory object cannot be created from another StackedMemory
instance unless that other instance has enough backing store reserved for
allocating the guest’s backing store;

3. a host cannot be finalized while any of its guests are occupied by a schedulable;
and

4. a StackedMemory instance’s allocation area cannot be resized when more than
one task is active in the area.

11.2.16.2 Enforcing Encapsulation

Access to backing store memory for creation of memory areas can also be controlled in
a fine-grained fashion by creating a Schedulable with a StackedMemory as its explicit
initial scoped memory area. Such a Schedulable may allocate StackedMemory
instances only from the backing store of its initial allocation area and its children in
the scope stack. This means that a Schedulable thus configured

1. may not construct a root StackedMemory, and

RTSJ 2.0 (Final Draft) 349

O© 0O Tk W+~

[e
=W = O

11 Alternative Memory Areas

Figure 11.1: Manipulation of StackedMemory Areas

(a) Root Allocation)
Area Root Backing Store

(b) Root Allocation Root Free Host Allocation Host Backing Store
Area Backing Store Area Taken from Root

© Root Allocation ° Leaf Host Allocation Host Backing Store
Area E Alloc. Area Area Taken from Root

2. may only construct a StackedMemory if its explicit initial scoped memory area

is on its current scope stack.
Used in conjunction with the limits provided by ScopedMemoryParameters, this
allows a Schedulable’s access to global memory resources to be tightly constrained.

11.2.16.3 Example

Figure 11.1 graphically depicts the behavior of StackedMemory backing stores and
allocation areas for a root StackedMemory as well as one host and one guest child
StackedMemory under that root. A code fragment that could create the stack
topology in Figure 11.1 is as follows. Assume that this fragment executes in an
allocation context other than a StackedMemory, and that zero overhead is required
for memory area creation. An implementation may require a constant amount of
overhead, drawn from the backing store, for each StackedMemory area created in the
store.

// Create a StackedMemory with a 10 kB backing store and
// 2 kB allocation area

rootArea = new StackedMemory(2048, 10240); // (a)
rootArea.enter(new Runnable()

{
public void run()
{
// Create a host area with a 6 kB backing store and
// 2 kB allocation area
hostArea = new StackedMemory(2048, 6144); // (b)
// Create a guest area with a 2 kB allocation area
guestArea = new StackedMemory(1536); // (c)
}
s

Commented points (a), (b), and (c¢) correspond to their respective subfigures in
Figure 11.1. At point (a), a root StackedMemory has been created with its 10 kB
backing store drawn from the global store. It contains a 2 kB allocation area, which

350 RTSJ 2.0 (Final Draft)

Semantics 11.2

is then entered. With that allocation area as the current allocation context, a new
host StackedMemory is created at (b), reserving 6 kB of the root StackedMemory’s
backing store for its own use and creating a second 2 kB allocation area within that
reservation. A new guest StackedMemory is then created at (c¢) in the root area
(without entering the host child), occupying 1.5 kB of the remaining free 2 kB of the
backing store in the root area. At this point, the root area’s backing store is almost
entirely occupied, with one 2 kB allocation area, one 1.5 kB store, and a 6 kB host
area backing store reservation, and 512 B of free backing store in between. The host
StackedMemory created at (b) has 4 kB of its backing store remaining unoccupied in
its reservation, which could be allocated to additional host or guest StackedMemory
areas beneath it in the stack.

11.2.17 Pinnable Memory

As with LTMemory, PinnableMemory class is a subset of ScopedMemory. The only
difference between PinnableMemory and LTMemory is that PinnableMemory supports
the concept of pinning. Pinning adds some additional requirements to reference
counting, as described in Section 11.2.6. To minimize the chance for race conditions,
when and from what context a PinnableMemory can be pinned and unpinned is
restricted. Mor details are given in the documentation for PinnableMemory.pin and
PinnableMemory.unpin.

11.2.18 Startup Considerations

Normally, a realtime Java program starts with a conventional Java thread with a
normal thread group. The RTSJ now requires the initial thread group to be a realtime
thread group. Optionally the thread group can be changed to a realtime thread at
startup too. In addition, an Alternative Memory Module option provides a means of
running without a heap. This requires changing the initial memory area as well.

A compilant implementation my provide a property called javax.realtime.start
to control the starty thread type. By setting true, the Java main thread and all
internal system threads are created as realtime threads, instead of conventional Java
threads. Though a conventional Java thread may have a realtime priority, it may
not enter a scoped memory. This property removes the need to create an extra
thread for entering scoped memory.

Furthermore, the memory area used for class initialization can be controlled. The
default memory area used for class initialization is heap. In order for another area
to be used, immortal memory size must be greater than zero. Then, a property
called javax.realtime.start.immortal may be provided by systems that support
the javax.realtime.memory package. Setting this property to true configures the
system to not use a heap at all. Instead, the initial memory area is the instance
of ImmortalMemory. An implementation that cannot run without a heap should
not start up when this property is set; where possible, the process should return
a documented nonzero error code. In addition, the memory area for class initial-
ization can be controlled on a per package basis by using the package annotation
ClassAllocation with a value from MemoryAreaType.

RTSJ 2.0 (Final Draft) 351

.realtime

11 Alternative Memory Areas

The default value for each of these properties is false. Setting javax.realtime.start.immortal
to true without setting javax.realtime.start.realtime as well is an error
condition. Where possible, the process should return another documented nonzero
error code for this error.

352 RTSJ 2.0 (Final Draft)

EnclosedType

javazx.realtime 11.3

11.3 javax.realtime

11.3.1 Enumerations

11.3.1.1 EnclosedType

public enum EnclosedType

Inheritance

java.lang.Object
java.lang. Enum<Enclosed Type>
EnclosedType

Description

Represents type size classes for deciding how large a lambda is. This size is
dependent on what variables the lambda expression contains in its closure, i.e., it

encloses. It is used by the reserveLambda methods in SizeEstimator.

Since RTSJ 2.0

11.3.1.1.1 Enumeration Constants

BOOLEAN
public static final EnclosedType

Description
Represents a Java boolean.

BYTE
public static final EnclosedType

Description
Represents a Java byte.

CHAR
public static final EnclosedType

Description
Represents a Java char.

SHORT
public static final EnclosedType

Description
Represents a Java short.

BOOLEAN

BYTE

CHAR

SHORT

RTSJ 2.0 (Final Draft)

353

11 Alternative Memory Areas

EnclosedType

INT
public static final EnclosedType

Description

Represents a Java int.

FLOAT
public static final EnclosedType

Description

Represents a Java float.

LONG
public static final EnclosedType

Description

Represents a Java long.

DOUBLE
public static final EnclosedType

Description

Represents a Java double.

REFERENCE
public static final EnclosedType

Description

Represents a reference to any object.

11.3.1.1.2 Methods

INT

FLOAT

LONG

DOUBLE

REFERENCE

values
Signature

public static javax.realtime.EnclosedTypel[]

values ()

Description

354 RTSJ 2.0 (Final Draft)

HeapMemory javazx.realtime 11.3

valueOf(String)

Signature
public static javax.realtime.EnclosedType
valueOf (String name)

Description

11.3.2 Classes
11.3.2.1 HeapMemory

public class HeapMemory

Inheritance
java.lang.Object
MemoryArea
PerennialMemory
HeapMemory
Description
The HeapMemory class is a singleton object that allows logic with a non-heap
allocation context to allocate objects in the Java heap.

11.3.2.1.1 Methods

enter

Signature
public void
enter ()

Description
Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea) or the enter method exits.

Throws
IllegalTaskStateException—when the caller context in not an instance of Sched-
ulable.

StaticIllegalArgumentException—when the caller is a schedulable and a null
value for logic was supplied when the memory area was constructed.

MemoryAccessError—when caller is a schedulable which may not use the heap.

RTSJ 2.0 (Final Draft) 355

11 Alternative Memory Areas HeapMemory

enter(Runnable)
Signature

public void

enter (Runnable logic)

Description

Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea) or the
enter method exits.

Parameters
logic—The Runnable object whose run() method should be invoked.
Throws
MemoryAccessError—when caller is a schedulable which may not use the heap.
IllegalTaskStateException—when the caller context is not an instance of Sched-
ulable.

StaticIllegalArgumentException—when the caller is a schedulable and logic
is null.

instance

Signature
public static javax.realtime.HeapMemory
instance()

Description

Returns a reference to the singleton instance of HeapMemory representing the Java
heap. The singleton instance of this class shall be allocated in the ImmortalMemory
area.

Returns
the singleton HeapMemory object.

executeInArea(Runnable)
Signature
public void
executeInArea(Runnable logic)

Description

Executes the run method from the logic parameter using heap as the current
allocation context. For a schedulable, this saves the current scope stack and
replaces it with one consisting only of the HeapMemory instance; restoring the
original scope stack upon completion.

Parameters

356 RTSJ 2.0 (Final Draft)

HeapMemory javazx.realtime 11.3

logic—The runnable object whose run() method should be executed.
Throws
StaticIllegalArgumentException—when logic is null.

MemoryAccessError—when caller is a schedulable which may not use the heap.

newArray(Class, int)
Signature
public java.lang.Object
newArray(java.lang.Class<?> type,
int number)

Description

Allocates an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type—The class of the elements of the new array. To create an array of a primitive
type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)
number—The number of elements in the new array.
Throws
MemoryAccessError—when caller is a schedulable which may not use the heap.

StaticIllegalArgumentException—when number is less than zero, type is null,
or type is java.lang.Void.TYPE.

StaticOutO0fMemoryError—when space in the memory area is exhausted.

Returns
a new array of class type, of number elements.

newlInstance(Class)
Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,
InstantiationException

Description

Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type—The class of which to create a new instance.
Throws
MemoryAccessError—when caller is a schedulable which may not use the heap.

IllegalAccessException—The class or initializer is inaccessible.

RTSJ 2.0 (Final Draft) 357

11 Alternative Memory Areas ImmortalMemory

StaticIllegalArgumentException—when type is null.

ExceptionInInitializerError—when an unexpected exception has occurred in
a static initializer.

StaticOut0fMemoryError—when space in the memory area is exhausted.

InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, or it is an array.

Returns
a new instance of class type.

newlInstance(Constructor, Object)
Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,
java.lang.0Object[] args)
throws IllegalAccessException,
InstantiationException,
InvocationTargetException

Description

Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c—The constructor for the new instance.
args—An array of arguments to pass to the constructor.
Throws
MemoryAccessError—when caller is a schedulable which may not use the heap.
IllegalAccessException—when the class or initializer is inaccessible under Java
access control.
InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, it is an array.
StaticOut0fMemoryError—when space in the memory area is exhausted.
StaticIllegalArgumentException—when c is null, or the args array does not
contain the number of arguments required by c. A null value of args is
treated like an array of length 0.

InvocationTargetException—when the underlying constructor throws an excep-
tion.

Returns
a new instance of the object constructed by c.

11.3.2.2 ImmortalMemory

358 RTSJ 2.0 (Final Draft)

ImmortalMemory javax.realtime 11.3

public class ImmortalMemory

Inheritance
java.lang.Object
MemoryArea
PerennialMemory
ImmortalMemory
Description

ImmortalMemory is a memory resource that is unexceptionally available to all
schedulables and Java threads for use and allocation.

An immortal object may not contain references to any form of scoped
memory, e.g., javax.realtime.memory.LTMemory, javax.realtime.memory.
StackedMemory, or javax.realtime.memory.PinnableMemory.

Objects in immortal memory have the same states with respect to finalization
as objects in the standard Java heap, but there is no assurance that immortal
objects will be finalized even when the JVM is terminated.

Methods from ImmortalMemory should be overridden only by methods that
use super.

11.3.2.2.1 Methods

instance

Signature
public static javax.realtime.ImmortalMemory
instance ()

Description

Returns a pointer to the singleton ImmortalMemory object.

Returns
The singleton ImmortalMemory object.

executeInArea(Runnable)
Signature
public void
executeInArea(Runnable logic)

Description

Executes the run method from the logic parameter using this memory area as
the current allocation context. For a schedulable, this saves the current scope
stack and replaces it with one consisting only of the ImmortalMemory instance;
restoring the original scope stack upon completion.

Parameters

RTSJ 2.0 (Final Draft) 359

11 Alternative Memory Areas MemoryArea

logic—The runnable object whose run() method should be executed.
Throws
StaticIllegalArgumentException—when logic is null.

11.3.2.3 MemoryArea

public abstract class MemoryArea

Inheritance
java.lang.Object
MemoryArea

Description
MemoryArea is the abstract base class of all classes dealing with the representations
of allocatable memory areas, including the immortal memory area, physical
memory and scoped memory areas. This is an abstract class, but no method in
this class is abstract. An application should not subclass MemoryArea without
complete knowledge of its implementation details.

11.3.2.3.1 Constructors

MemoryArea(long, Runnable)
Signature
protected
MemoryArea(long size,
Runnable logic)
throws StaticIllegalArgumentException,
StaticOutOfMemoryError,
IllegalAssignmentError

Description
Creates an instance of MemoryArea.

Parameters
size—The size of MemoryArea to allocate, in bytes.
logic—A runnable, whose run() method will be called whenever enter () is called.
When logic is null, this constructor is equivalent to MemoryArea(long size).
Throws
StaticIllegalArgumentException—when the size parameter is less than zero.
StaticOutO0fMemoryError—when there is insufficient memory for the MemoryArea
object or for its allocation area in its backing store.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

360 RTSJ 2.0 (Final Draft)

MemoryArea javax.realtime 11.3

MemoryArea(SizeEstimator, Runnable)
Signature
protected
MemoryArea(SizeEstimator size,
Runnable logic)
throws StaticIllegalArgumentException,
StaticOutOfMemoryError,
IllegalAssignmentError

Description

Equivalent to MemoryArea(long, Runnable) with the argument list (size.
getEstimate(), logic).

Parameters
size—A SizeEstimator object which indicates the amount of memory required
by this MemoryArea.
logic—A runnable, whose run() method will be called whenever enter() is
called. When logic is null, this constructor is equivalent to Memory-
Area(SizeEstimator size).
Throws
StaticIllegalArgumentException—when size is null or size.getEstimate()
is negative.
StaticOutO0fMemoryError—when there is insufficient memory for the MemoryArea
object or for its allocation area in its backing store.
IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

MemoryArea(long)
Signature
protected
MemoryArea(long size)
throws StaticIllegalArgumentException,
StaticOutOfMemoryError

Description

Equivalent to MemoryArea(long, Runnable) with the argument list (size,
null).

Parameters
size—The size of MemoryArea to allocate, in bytes.

Throws
StaticIllegalArgumentException—when size is less than zero.

StaticOutO0fMemoryError—when there is insufficient memory for the MemoryArea
object or for its allocation area in its backing store.

RTSJ 2.0 (Final Draft) 361

11 Alternative Memory Areas MemoryArea

MemoryArea(SizeEstimator)
Signature
protected
MemoryArea(SizeEstimator size)
throws StaticIllegalArgumentException,
StaticOutOfMemoryError

Description

Equivalent to MemoryArea(long, Runnable) with the argument list (size.
getEstimate(), null).

Parameters
size—A SizeEstimator object which indicates the amount of memory required
by this MemoryArea.
Throws
StaticIllegalArgumentException—when the size parameter is null, or size.
getEstimate () is negative.
StaticOutO0fMemoryError—when there is insufficient memory for the MemoryArea
object or for its allocation area in its backing store.

11.3.2.3.2 Methods

enter
Signature
public void
enter ()
throws IllegalTaskStateException,
StaticIllegalArgumentException,
ThrowBoundaryError,
MemoryAccessError

Description

Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea) or the enter method exits.

Throws
IllegalTaskStateException—when the caller context is not an instance of Sched-
ulable.

StaticIllegalArgumentException—when the caller is a schedulable and a null
value for logic was supplied when the memory area was constructed.

362 RTSJ 2.0 (Final Draft)

MemoryArea javax.realtime 11.3

ThrowBoundaryError—Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an I1legalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The ThrowBound-
aryError instance is preallocated by the VM to avoid cascading creation of
ThrowBoundaryError.

MemoryAccessError—when caller is a schedulable that may not use the heap and
this memory area’s logic value is allocated in heap memory.

enter (Runnable)
Signature

public void

enter (Runnable logic)

Description

Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea) or the
enter method exits.

Parameters
logic—The Runnable object whose run() method should be invoked.
Throws
IllegalTaskStateException—when the caller context is not an instance of Sched-
ulable.
StaticIllegalArgumentException—when the caller is a schedulable and logic
is null.
ThrowBoundaryError—Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an I1legalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The ThrowBound-
aryError instance is preallocated by the VM to avoid cascading creation of
ThrowBoundaryError.

enter(Supplier)

Signature
public T
enter(java.util.function.Supplier<T> logic)

Description

Same as enter (Runnable) except that the executed method is called get and an
object is returned. The Supplier.get() method must ensure that the returned
object is allocated outside the area, when the area is not a PerennialMemory.

RTSJ 2.0 (Final Draft) 363

11 Alternative Memory Areas MemoryArea

Parameters
logic—The object whose get method will be executed.
Throws

IllegalAssignmentError—when the return value allocated in area and area is not
a PerennialMemory.

Returns
a result from the computation.

Since RTSJ 2.0

enter(BooleanSupplier)
Signature

public boolean

enter (BooleanSupplier logic)

Description

Same as enter (Runnable) except that the executed method is called get and a
boolean is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

enter (IntSupplier)
Signature

public int

enter (IntSupplier logic)

Description

Same as enter (Runnable) except that the executed method is called get and
an int is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

enter(LongSupplier)
Signature

public long

enter (LongSupplier logic)

Description

364 RTSJ 2.0 (Final Draft)

MemoryArea javax.realtime 11.3

Same as enter (Runnable) except that the executed method is called get and a
long is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

enter(DoubleSupplier)
Signature

public double

enter (DoubleSupplier logic)

Description

Same as enter (Runnable) except that the executed method is called get and a
double is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

getMemoryArea(Object)

Signature
public static javax.realtime.MemoryArea
getMemoryArea(Object object)

Description
Gets the MemoryArea in which the given object is located.
Throws

StaticIllegalArgumentException—when the value of object is null.

Returns
the instance of MemoryArea from which object was allocated.

memoryConsumed
Signature
public long
memoryConsumed ()

Description

RTSJ 2.0 (Final Draft) 365

11 Alternative Memory Areas MemoryArea

For memory areas where memory is freed under program control this returns
an exact count, in bytes, of the memory currently used by the system for the
allocated objects. For memory areas (such as heap) where the definition of "used"
is imprecise, this returns the best value it can generate in constant time.

Returns
the amount of memory consumed in bytes.

memoryRemaining
Signature
public long
memoryRemaining ()

Description

An approximation of the total amount of memory currently available for future
allocated objects, measured in bytes.

Returns
the amount of remaining memory in bytes.

newArray(Class, int)
Signature
public java.lang.Object
newArray(java.lang.Class<?> type,
int number)
throws StaticIllegalArgumentException,
StaticOutOfMemoryError,
StaticSecurityException

Description

Allocates an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type—The class of the elements of the new array. To create an array of a primitive
type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)
number—The number of elements in the new array.
Throws
StaticIllegalArgumentException—when number is less than zero, type is null,
or type is java.lang.Void.TYPE.

StaticOutO0fMemoryError—when space in the memory area is exhausted.
StaticSecurityException—when the caller does not have permission to create a
new instance.

Returns
a new array of class type, of number elements.

366 RTSJ 2.0 (Final Draft)

MemoryArea javax.realtime 11.3

newArrayInArea(Object, Class, int)
Signature
public static java.lang.0Object
newArrayInArea(Object object,
java.lang.Class<7> type,
int size)

Description

A helper method to create an array of type type in the memory area containing
object.

Parameters
object—is the reference for determining the area in which to allocate the array.

type—is the type of the array element for the returned array.

size—is the size of the array to return.
Returns
a new array of element type with size elements.

Since RTSJ 2.0

newlInstance(Class)
Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,
StaticIllegalArgumentException,
InstantiationException,
StaticOutOfMemoryError,
ExceptionInInitializerError,
StaticSecurityException

Description

Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type—The class of which to create a new instance.
Throws
IllegalAccessException—The class or initializer is inaccessible.

StaticIllegalArgumentException—when type is null.

InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, or it is an array.

ConstructorCheckedException—a checked exception was thrown by the construc-
tor.

StaticOutO0fMemoryError—when space in the memory area is exhausted.

RTSJ 2.0 (Final Draft) 367

11 Alternative Memory Areas MemoryArea

ExceptionInInitializerError—when an unexpected exception has occurred in
a static initializer.

StaticSecurityException—when the caller does not have permission to create a
new instance.

Returns
a new instance of class type.

newlInstance(Constructor, Object)
Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,
java.lang.0Object[] args)
throws ExceptionInInitializerError,
IllegalAccessException,
StaticIllegalArgumentException,
InstantiationException,
InvocationTargetException,
StaticOutOfMemoryError,
StaticSecurityException

Description

Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c—The constructor for the new instance.
args—An array of arguments to pass to the constructor.
Throws
ExceptionInInitializerError—when an unexpected exception has occurred in
a static initializer

IllegalAccessException—when the class or initializer is inaccessible under Java
access control.

StaticIllegalArgumentException—when c is null, or the args array does not
contain the number of arguments required by c. A null value of args is
treated like an array of length 0.

InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, it is an array.

InvocationTargetException—when the underlying constructor throws an excep-
tion.

StaticOutO0fMemoryError—when space in the memory area is exhausted.

StaticSecurityException—when the caller does not have permission to create a
new instance.

Returns
a new instance of the object constructed by c.

368 RTSJ 2.0 (Final Draft)

MemoryArea javax.realtime 11.3

size

Signature
public long
size()

Description

Queries the size of the memory area. The returned value is the current size.
Current size may be larger than initial size for those areas that are allowed to
grow.

Returns
the size of the memory area in bytes.

executeInArea(Runnable)
Signature
public void
executeInArea(Runnable logic)
throws StaticIllegalArgumentException

Description

Executes the run() method from the logic parameter using this memory area as
the current allocation context. The effect of executeInArea on the scope stack
is specified in the subclasses of MemoryArea.

Parameters
logic—The runnable object whose run() method should be executed.

Throws
StaticIllegalArgumentException—when logic is null.

executeInArea(Supplier)

Signature
public T
executeInArea(java.util.function.Supplier<T> logic)

Description

Same as executeInArea(Runnable) except that the executed method is called
get and an object is returned. For a memory are that is not a PerennialMemory,
care must be taken that the returned value is assignable to an object allocated in
the current area.

Parameters
logic—The object whose get method will be executed.
Throws

IllegalAssignmentError—when the return value is not assignable to an object
allocated in the current area.

Returns

RTSJ 2.0 (Final Draft) 369

11 Alternative Memory Areas MemoryArea

a result from the computation.
Since RTSJ 2.0

executeInArea(BooleanSupplier)
Signature
public boolean
executeInArea(BooleanSupplier logic)

Description
Same as executelnArea(Runnable) except that the executed method is called
get and a boolean is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

executeInArea(IntSupplier)
Signature
public int
executeInArea(IntSupplier logic)

Description
Same as executeInArea(Runnable) except that the executed method is called
get and an int is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

executeInArea(LongSupplier)
Signature
public long
executeInArea(LongSupplier logic)

Description

Same as executeInArea(Runnable) except that the executed method is called
get and a long is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

370 RTSJ 2.0 (Final Draft)

MemoryParameters javax.realtime 11.3

executeInArea(DoubleSupplier)
Signature
public double
executeInArea(DoubleSupplier logic)

Description

Same as executeInArea(Runnable) except that the executed method is called
get and a double is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

mayHoldReferenceTo
Signature
public boolean
mayHoldReferenceTo ()

Description
Determines whether an object A allocated in the memory area represented by

this can hold a reference to an object B allocated in the current memory area.

Returns
true when B can be assigned to a field of A, otherwise false.

Since RTSJ 2.0

mayHoldReferenceTo(Object)

Signature
public boolean
mayHoldReferenceTo(Object value)

Description
Determines whether an object A allocated in the memory area represented by

this can hold a reference to the object value.

Parameters
value—The object to test.
Returns
true when value can be assigned to a field of A, otherwise false.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 371

11 Alternative Memory Areas MemoryParameters

11.3.2.4 MemoryParameters

public class MemoryParameters

Inheritance

java.lang.Object
MemoryParameters

Interfaces
Cloneable
Serializable

Description

Memory parameters can be given on the constructor of any Schedulable. They
provide limits on allocation. For garbage-collected objects, they provide the rate
of allocation, and for Immortal, the overall amount of allocation.

The limits in a MemoryParameters instance are enforced when a schedulable
creates a new object, e.g., uses the new operation. When a schedulable exceeds
its allocation or allocation rate limit, the error is handled as if the allocation
failed because of insufficient memory. The failed object allocation throws an
OutOfMemoryError.

A MemoryParameters object may be bound to more than one schedulable,
but that does not cause the memory budgets reflected by the parameter to be
shared among the schedulables that are associated with the parameter object.

As of RTSJ 2.0, instances of MemoryParameters are immutable.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

11.3.2.4.1 Fields

UNLIMITED
public static final long UNLIMITED

Description

Specifies no maximum limit.

Since RTSJ 2.0

11.3.2.4.2 Constructors

372 RTSJ 2.0 (Final Draft)

MemoryParameters javax.realtime 11.3

MemoryParameters(long, long, long)
Signature
public
MemoryParameters(long maxInitialArea,
long maxImmortal,
long allocationRate)
throws StaticIllegalArgumentException

Description

Creates a MemoryParameters object with the given values.

Parameters
maxInitialArea—A limit on the amount of memory the schedulable may allo-
cate in its initial scoped memory area. Units are in bytes. When zero, no
allocation is allowed in the memory area. When the initial memory area is
not a ScopedMemory, this parameter has no effect. To specify no limit, use
UNLIMITED.

maxImmortal—A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation is allowed in
immortal. To specify no limit, use UNLIMITED.

allocationRate—A limit on the rate of allocation in the heap. Units are in bytes
per second of wall clock time. When allocationRate is zero, no allocation is
allowed in the heap. To specify no limit, use UNLIMITED. Measurement starts
when the schedulable is first released for execution; not when it is constructed.
Enforcement of the allocation rate is an implementation option. When the
implementation does not enforce allocation rate limits, it treats all positive
allocation rate limits as UNLIMITED.

Throws

StaticIllegalArgumentException—when any value less than zero is passed as

the value of maxInitialArea, maxImmortal, or allocationRate.

MemoryParameters(long, long)
Signature
public
MemoryParameters(long maxInitialArea,
long maxImmortal)

Description

Creates a MemoryParameters object with the given values and allocationRate
set to UNLIMITED. It has the same effect as MemoryParameters(maxInitialArea,
maxImmortal, UNLIMITED)

MemoryParameters(long)
Signature

RTSJ 2.0 (Final Draft) 373

11 Alternative Memory Areas MemoryParameters

public
MemoryParameters(long allocationRate)

Description

Creates a MemoryParameters object with the given values and allocationRate
set to allocationRate. It has the same effect as MemoryParameters (UNLIMITED,
UNLIMITED, allocationRate)

Since RTSJ 2.0

11.3.2.4.3 Methods

clone

Signature
public java.lang.Object
clone()

Description

Returns a clone of this. This method should behave effectively as if it constructed
a new object with the visible values of this.
e The new object is in the current allocation context.
e clone does not copy any associations from this and it does not implicitly
bind the new object to a SO.

Since RTSJ 1.0.1

get AllocationRate
Signature
public long
getAllocationRate()

Description

Determines the limit on the rate of allocation in the heap. Units are in bytes per
second.

Returns

the allocation rate in bytes per second. When zero, no allocation is allowed in
the heap. When the returned value is UNLIMITED then the allocation rate on
the heap is uncontrolled. Enforcement of allocation rates between zero and
UNLIMITED is implementation dependent.

374 RTSJ 2.0 (Final Draft)

PerennialMemory javax.realtime 11.3

getMaxImmortal
Signature
public long
getMaxImmortal ()

Description

Gets the limit on the amount of memory the schedulable may allocate in the
immortal area. Units are in bytes.

Returns
the limit on immortal memory allocation. When zero, no allocation is allowed in
immortal memory. When the returned value is UNLIMITED then there is no
limit for allocation in immortal memory.

getMaxInitialMemoryArea
Signature
public long
getMaxInitialMemoryArea()

Description

Gets the limit on the amount of memory the schedulable may allocate in its
initial memory area, when initial is a scoped memory. Units are in bytes.

Returns
the allocation limit in the schedulable’s initial memory area. When zero, no
allocation is allowed in the initial memory area. When the returned value is
UNLIMITED then there is no limit for allocation in the initial memory area.

Since RTSJ 2.0

11.3.2.5 PerennialMemory

public abstract class PerennialMemory

Inheritance

java.lang.Object
MemoryArea
PerennialMemory

Description

A base class for all memory areas whose contents can be unexceptionally referenced.
In other words, any memory area can store a reference to an object stored in
one of these areas. This includes all concrete memory areas in the core package.
Only memory areas of this type can be a root for a scoped memory.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 375

11 Alternative Memory Areas SizeEstimator

11.

3.2.6 SizeEstimator

public class SizeEstimator

Inh

eritance

java.lang.Object

SizeEstimator

Description

See

11.

This class maintains an estimate of the amount of memory required to store a set
of objects.

SizeEstimator is a floor on the amount of memory that should be allocated.
Many objects allocate other objects when they are constructed. SizeEstimator
only estimates the memory requirement of the object itself, it does not include
memory required for any objects allocated at construction time. When the
instance itself is allocated in several parts (when for instance the object and
its monitor are separate), the size estimate shall include the sum of the sizes
of all the parts that are allocated from the same memory area as the instance.
Alignment considerations, and possibly other order-dependent issues may cause
the allocator to leave a small amount of unusable space, consequently the size
estimate cannot be seen as more than a close estimate.

Section MemoryArea.MemoryArea(SizeEstimator)

3.2.6.1 Constructors

SizeEstimator
Signature

public
SizeEstimator ()

Description

11.

Create an empty size estimator.

3.2.6.2 Methods

reserve(Class, int)
Signature

376

public void
reserve(java.lang.Class<?> c,
int number)

RTSJ 2.0 (Final Draft)

SizeEstimator javax.realtime 11.3

Description

Takes into account additional number instances of Class ¢ when estimating the
size of the MemoryArea.

Parameters
c—The class to take into account.

number—The number of instances of ¢ to estimate.
Throws
StaticIllegalArgumentException—when c is null or number is negative.

Since RTSJ 2.0 throws StaticIllegalArgumentException also when number is
less than zero.

reserve(SizeEstimator, int)
Signature
public void
reserve(SizeEstimator estimator,
int number)

Description

Takes into account additional number of the estimations from instances of SizeEs-
timator size when estimating the size of the MemoryArea.

Parameters
estimator—The given instance of SizeEstimator.
number—The number of times to reserve the size denoted by estimator.
Throws
StaticIllegalArgumentException—when estimator is null or number is less
than zero.

Since RTSJ 2.0 throws StaticIllegalArgumentException also when number is
less than zero.

reserve(SizeEstimator)
Signature
public void
reserve(SizeEstimator size)

Description

Takes into account an additional estimation from the instance of SizeEstimator
size when estimating the size of the MemoryArea.

Parameters
size—The given instance of SizeEstimator.
Throws
StaticIllegalArgumentException—when size is null.

RTSJ 2.0 (Final Draft) 377

11 Alternative Memory Areas SizeEstimator

reserveArray(int)
Signature
public void
reserveArray(int length)

Description

Takes into account an additional instance of an array of length reference values
when estimating the size of the MemoryArea.

Parameters
length—The number of entries in the array.
Throws

StaticIllegalArgumentException—when length is negative.
Since RTSJ 1.0.1

reserveArray(int, Class)
Signature
public void
reserveArray(int length,
java.lang.Class<?> type)

Description

Takes into account an additional instance of an array of length primitive values
when estimating the size of the MemoryArea.

Class values for the primitive types are available from the corresponding class
types; e.g., Byte. TYPE, Integer. TYPE, and Short. TYPE.

Parameters
length—The number of entries in the array.

type—The class representing a primitive type. The reservation will leave room for
an array of length of the primitive type corresponding to type.
Throws
StaticIllegalArgumentException—when length is negative, or type does not
represent a primitive type.

Since RTSJ 1.0.1

reserveLambda(EnclosedType, EnclosedType, Enclosed-
Type)
Signature
public void
reserveLambda(EnclosedType first,
EnclosedType second,
EnclosedType[] others)

Description

378 RTSJ 2.0 (Final Draft)

SizeEstimator javax.realtime 11.3

Determines the size of a lambda with more than two variables in its closure and
add it to this size estimator.

Parameters
first—Type of first variable in closure.
second—Type of second variable in closure.

others—Types of additional variables in closure.
Since RTSJ 2.0

reserveLambda(EnclosedType, EnclosedType)
Signature
public void
reserveLambda (EnclosedType first,
EnclosedType second)

Description

Determines the size of a lambda with two variables in its closure and add it to
this size estimator.

Parameters
first—Type of first variable in closure.

second—Type of second variable in closure.
Since RTSJ 2.0

reserveLambda(EnclosedType)
Signature
public void
reserveLambda(EnclosedType first)

Description

Determines the size of a lambda with one variable in its closure and add it to
this size estimator.

Parameters
first—Type of first variable in closure.

Since RTSJ 2.0

reserveLambda
Signature
public void
reserveLambda ()

Description

Determines the size of a lambda with no closure and add it to this size estimator.

Since RTSJ 2.0

RTSJ 2.0 (Final Draft) 379

11 Alternative Memory Areas SizeEstimator

getEstimate
Signature
public long
getEstimate()

Description
Gets an estimate of the number of bytes needed to store all the objects reserved.

Returns
the estimated size in bytes.

clear

Signature
public void
clear()

Description

Restores the estimate value to zero for reuse.

Since rtsj 2.0

380 RTSJ 2.0 (Final Draft)

MemoryAreaType javax.realtime.memory 11.4

11.4 javax.realtime.memory

11.4.1 Annotations
11.4.1.1 ClassAllocation

public abstract class ClassAllocation

Interfaces
Annotation

Description

An annotation to mark the memory area to use for class allocation and initializa-
tion for a package.

11.4.2 Enumerations

11.4.2.1 MemoryAreaType

public enum MemoryAreaType

Inheritance

java.lang.Object
java.lang. Enum<MemoryAreaType>
MemoryAreaType

11.4.2.1.1 Enumeration Constants

UNSPECIFIED
public static final MemoryAreaType UNSPECIFIED

HEAP
public static final MemoryAreaType HEAP

IMMORTAL
public static final MemoryAreaType IMMORTAL

PERENNIAL
public static final MemoryAreaType PERENNIAL

RTSJ 2.0 (Final Draft) 381

11 Alternative Memory Areas

LTMemory

SCOPED
public static final MemoryAreaType SCOPED

ANY
public static final MemoryAreaType ANY

11.4.2.1.2 Methods

values

Signature
public static javax.realtime.memory.MemoryAreaType[]
values ()

Description

valueOf(String)

Signature
public static javax.realtime.memory.MemoryAreaType
valueOf (String name)

Description

get(int)

Signature
public javax.realtime.memory.MemoryAreaType
get (int key)

11.4.3 Classes
11.4.3.1 LTMemory

public class LTMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
LTMemory

382 RTSJ 2.0 (Final Draft)

LTMemory javax.realtime.memory 11.4

Description

LTMemory represents a memory area guaranteed by the system to have linear
time allocation when memory consumption from the memory area is less than
the memory area’s size.

The memory area described by a LTMemory instance does not exist in the Java
heap, and is not subject to garbage collection. Thus, it is safe to use a LTMemory
object as the initial memory area for a javax.realtime.Schedulable instance
which may not use the javax.realtime.HeapMemory or to enter the memory
area using the ScopedMemory.enter method within such an instance.

Enough memory must be committed by the completion of the constructor
to satisfy the memory requirement given in the constructor. Committed means
that this memory must always be available for allocation. The memory allocation
must behave, with respect to successful allocation, as if it were contiguous; i.e., a
correct implementation must guarantee that any sequence of object allocations
that could ever succeed without exceeding a specified initial memory size will
always succeed without exceeding that initial memory size and succeed for any
instance of LTMemory with that initial memory size.

Creation of an LTMemory shall fail with a javax.realtime.
StaticOutO0fMemoryError when the current javax.realtime.Schedulable has
been configured with a ScopedMemoryParameters.getMaxGlobalBackingStore
that would be exceeded by said creation.

Methods from LTMemory should be overridden only by methods that use
super.

See Section javax.realtime.MemoryArea
See Section ScopedMemory

See Section javax.realtime.Schedulable
Since RTSJ 2.0 moved to this package.

11.4.3.1.1 Constructors

LTMemory(long, Runnable)
Signature
public
LTMemory(long size,
Runnable logic)

Description

Create a scoped memory of the given size and with the give logic to run upon
entry when no other logic is given.

Since RTSJ 1.0.1
Parameters
size—The size in bytes of the memory to allocate for this area. This memory must
be committed before the completion of the constructor.

RTSJ 2.0 (Final Draft) 383

11 Alternative Memory Areas LTMemory

logic—The run() of the given Runnable will be executed using this as its ini-
tial memory area. When logic is null, this constructor is equivalent to
LTMemory (long).

Throws

javax.realtime.StaticIllegalArgumentException—when size is less than
Zero.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the LTMemory object or for its allocation area in its backing store, or
when the current Schedulable would exceed its configured allowance of global
backing store.

javax.realtime.IllegalAssignmentError—when storing logic in this would
violate the assignment rules.

LTMemory(SizeEstimator, Runnable)
Signature
public
LTMemory(SizeEstimator size,
Runnable logic)

Description
Equivalent to LTMemory(long, Runnable) with argument list (size.
getEstimate(), runnable).

Since RTSJ 1.0.1
Parameters
size—An instance of javax.realtime.SizeEstimator used to give an estimate
of the initial size. This memory must be committed before the completion of
the constructor.
logic—The run() of the given Runnable will be executed using this as its ini-
tial memory area. When logic is null, this constructor is equivalent to
LTMemory(SizeEstimator).
Throws
javax.realtime.StaticIllegalArgumentException—when size is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the LTMemory object or for its allocation area in its backing store, or
when the current Schedulable would exceed its configured allowance of global
backing store.
javax.realtime.IllegalAssignmentError—when storing logic in this would
violate the assignment rules.

LTMemory(long)

Signature
public
LTMemory(long size)

384 RTSJ 2.0 (Final Draft)

PinnableMemory javax.realtime.memory 11.4

Description

Equivalent to LTMemory(long, Runnable) with the argument list ((size,
null).

Since RTSJ 1.0.1
Parameters
size—The size in bytes of the memory to allocate for this area. This memory must
be committed before the completion of the constructor.
Throws
javax.realtime.StaticIllegalArgumentException—when size is less than
Zero.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the LTMemory object or for its allocation area in its backing store, or
when the current Schedulable would exceed its configured allowance of global
backing store.

LTMemory(SizeEstimator)
Signature
public
LTMemory(SizeEstimator size)

Description

Equivalent to LTMemory(long, Runnable) with argument list (size.
getEstimate(), null).

Since RTSJ 1.0.1
Parameters
size—An instance of javax.realtime.SizeEstimator used to give an estimate
of the initial size. This memory must be committed before the completion of
the constructor.
Throws
javax.realtime.StaticIllegalArgumentException—when size is null.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the LTMemory object, or when the current Schedulable would exceed its
configured allowance of global backing store.

11.4.3.2 PinnableMemory

public class PinnableMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
PinnableMemory

RTSJ 2.0 (Final Draft) 385

11 Alternative Memory Areas PinnableMemory

Description

This class is for passing information between different threads as in the producer
consumer pattern. One thread can enter an empty PinnableMemory, allocate
some data structure, put a reference in the portal, pin the scope, exit it, and then
pass it to another thread for further processing or consumption. Once the last
thread is done, the memory can be unpinned, causing its contents to be freed.

Creation of a PinnableMemory shall fail with a javax.realtime.
StaticOutO0fMemoryError when the current javax.realtime.Schedulable has
been configured with a ScopedMemoryParameters.getMaxGlobalBackingStore
that would be exceeded by said creation.

Since RTSJ 2.0

11.4.3.2.1 Constructors

PinnableMemory(long)
Signature
public
PinnableMemory(long size)
throws StaticIllegalArgumentException,
StaticOutOfMemoryError

Description

Creates a scoped memory of fixed size that can be held open when no javax.
realtime.Schedulable has it on its scoped memory stack.

Parameters
size—The number of bytes in the memory area.
Throws
javax.realtime.StaticIllegalArgumentException—when size is less than
Z€ero.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the PinnalbeMemory object or for its allocation area in its backing store, or
when the current Schedulable would exceed its configured allowance of global
backing store.

PinnableMemory(long, Runnable)
Signature
public
PinnableMemory(long size,
Runnable logic)

Description

386 RTSJ 2.0 (Final Draft)

PinnableMemory javax.realtime.memory 11.4

Creates a scoped memory of fixed size that can be held open when no javax.
realtime.Schedulable has it on its scoped memory stack.

Parameters
size—The number of bytes in the memory area.
logic—The logic to execute when none is provide at enter.

Throws
javax.realtime.StaticIllegalArgumentException—when size is less than

Zero.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the PinnalbeMemory object or for its allocation area in its backing store, or
when the current Schedulable would exceed its configured allowance of global
backing store.

PinnableMemory(SizeEstimator)
Signature
public
PinnableMemory(SizeEstimator size)
throws StaticIllegalArgumentException,
StaticOutOfMemoryError

Description
Equivalent to PinnableMemory(long) with size.getEstimate() as its argu-
ment.

Parameters
size—An estimator for determining the number of bytes in the memory area.

Throws
javax.realtime.StaticIllegalArgumentException—when size is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the PinnalbeMemory object or for its allocation area in its backing store, or
when the current Schedulable would exceed its configured allowance of global
backing store.

PinnableMemory(SizeEstimator, Runnable)
Signature
public
PinnableMemory(SizeEstimator size,
Runnable logic)

Description
Equivalent to PinnableMemory(long, Runnable) with size.getEstimate() as
its first argument.

Parameters
size—An estimator for determining the number of bytes in the memory area.

RTSJ 2.0 (Final Draft) 387

11 Alternative Memory Areas PinnableMemory

logic—The logic to execute when none is provide at enter.
Throws
javax.realtime.StaticIllegalArgumentException—when size is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
for the PinnalbeMemory object or for its allocation area in its backing store, or
when the current Schedulable would exceed its configured allowance of global
backing store.

11.4.3.2.2 Methods

pin
Signature
public void
pin(Q)
throws StaticIllegalStateException

Description

Prevents the contents from being freed.

Throws

StaticIllegalStateException—when the current allocation context is not this
allocation context.

unpin
Signature
public void
unpin()
throws StaticIllegalStateException

Description

Allows the contents to be freed once no javax.realtime.Schedulable is active
within the scope. The unpin method must be called as many times as pin to
take effect. If there is no task in the area when the call takes affect, then the
object in the area are reclaimed immediately, in the caller’s context.

Throws

javax.realtime.StaticIllegalStateException—when schedulable does not
have this memory area as its current memory area.

388 RTSJ 2.0 (Final Draft)

PinnableMemory javax.realtime.memory 11.4

isPinned
Signature
public boolean
isPinned ()

Description

Determines whether the scope may be cleared on last exit.

Returns
true when yes, otherwise false.

getPinCount
Signature
public int
getPinCount ()

Description
Finds out how many times the scope has been pinned, but not unpinned.

Returns
the number of outstanding pins.

joinPinned
Signature
public void
joinPinned ()
throws InterruptedException

Description

Same as ScopedMemory.join() except that the area may be pinned so the
memory may not have been cleared.

Throws

java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

joinPinned(HighResolutionTime)
Signature
public void
joinPinned(javax.realtime.HighResolutionTime<?> limit)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException

RTSJ 2.0 (Final Draft) 389

11 Alternative Memory Areas PinnableMemory

Description

Same as ScopedMemory. join(HighResolutionTime) except that the area may
be pinned so the memory may not have been cleared.

Parameters
limit—The maximum time to wait.
Throws
java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

joinAndEnterPinned
Signature
public void
joinAndEnterPinned ()
throws InterruptedException,
ScopedCycleException,
IllegalTaskStateException,
MemoryAccessError

Description

Same as ScopedMemory. joinAndEnter () except that the area may be pinned so
the memory may not have been cleared.

Throws
ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and entering
this scoped memory area would force deletion of the instance of Schedulable
that triggered finalization. This would include the scope containing the instance
of Schedulable, and the scope (if any) containing the scope containing the
instance of Schedulable.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

joinAndEnterPinned (Runnable)
Signature

public void

joinAndEnterPinned (Runnable logic)

390 RTSJ 2.0 (Final Draft)

PinnableMemory javax.realtime.memory 11.4

throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as ScopedMemory. joinAndEnter (Runnable) except that the area may be
pinned so the memory may not have been cleared.

Parameters
logic—the code to be executed in this memory area.
Throws

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

StaticIllegalArgumentException—when logic is null.

java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and entering
this scoped memory area would force deletion of the instance of Schedulable
that triggered finalization. This would include the scope containing the instance
of Schedulable, and the scope (if any) containing the scope containing the
instance of Schedulable.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

joinAndEnterPinned(Supplier)
Signature
public T
joinAndEnterPinned(java.util.function.Supplier<T> logic)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable) except that the executed method is
called get and an object is returned.

Parameters

RTSJ 2.0 (Final Draft) 391

11 Alternative Memory Areas PinnableMemory

logic—The object whose get method will be executed.
Returns
a result from the computation.

joinAndEnterPinned(BooleanSupplier)
Signature
public boolean
joinAndEnterPinned(BooleanSupplier logic)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable) except that the executed method is
called get and a boolean is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

joinAndEnterPinned(IntSupplier)
Signature
public int
joinAndEnterPinned (IntSupplier logic)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable) except that the executed method is
called get and an int is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

392 RTSJ 2.0 (Final Draft)

PinnableMemory javax.realtime.memory 11.4

joinAndEnterPinned(LongSupplier)
Signature
public long
joinAndEnterPinned(LongSupplier logic)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable) except that the executed method is
called get and a long is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnterPinned(DoubleSupplier)
Signature
public double
joinAndEnterPinned(DoubleSupplier logic)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable) except that the executed method is
called get and a double is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

joinAndEnterPinned (HighResolutionTime)

Signature
public void
joinAndEnterPinned(javax.realtime.HighResolutionTime<?> limit)

RTSJ 2.0 (Final Draft) 393

11 Alternative Memory Areas PinnableMemory

throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as ScopedMemory. joinAndEnter (HighResolutionTime) except that pin-
ning is ignored so the memory may not have been cleared.

Parameters
limit—The maximum time to wait.
Throws
ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and entering
this scoped memory area would force deletion of the instance of Schedulable
that triggered finalization. This would include the scope containing the instance
of Schedulable, and the scope (if any) containing the scope containing the
instance of Schedulable.

javax.realtime.StaticIllegalArgumentException—when the caller is a sched-
ulable, and time is null or no non-null logic value was supplied to the memory
area’s constructor.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

javax.realtime.StaticUnsupportedOperationException—when the wait oper-
ation is not supported using the clock associated with time.

joinAndEnterPinned(Runnable, HighResolutionTime)
Signature
public void
joinAndEnterPinned (Runnable logic,
javax.realtime.HighResolutionTime<?> 1limit)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

394 RTSJ 2.0 (Final Draft)

PinnableMemory javax.realtime.memory 11.4

Description

Same as ScopedMemory.joinAndEnter (Runnable, HighResolutionTime) ex-
cept that pinning is ignored so the memory may not have been cleared.

Parameters
logic—The logic to execute upon entry.

limit—The maximum time to wait.
Throws
java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

IllegalTaskStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and entering
this scoped memory area would force deletion of the instance of Schedulable
that triggered finalization. This would include the scope containing the instance
of Schedulable, and the scope (if any) containing the scope containing the
instance of Schedulable.

javax.realtime.StaticIllegalArgumentException—when the caller is a sched-
ulable, and time is null or no non-null logic value was supplied to the memory
area’s constructor.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

javax.realtime.StaticUnsupportedOperationException—when the wait oper-
ation is not supported using the clock associated with time.

joinAndEnterPinned(Supplier, HighResolutionTime)
Signature
public P
joinAndEnterPinned(java.util.function.Supplier<P> logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable, HighResolutionTime) except that
the executed method is called get and an object is returned.

RTSJ 2.0 (Final Draft) 395

11 Alternative Memory Areas PinnableMemory

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

joinAndEnterPinned(BooleanSupplier, HighResolution-
Time)
Signature
public boolean
joinAndEnterPinned(BooleanSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable, HighResolutionTime) except that
the executed method is called get and a boolean is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

joinAndEnterPinned(IntSupplier, HighResolutionTime)
Signature
public int
joinAndEnterPinned (IntSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable, HighResolutionTime) except that
the executed method is called get and an int is returned.

Parameters
logic—The object whose get method will be executed.
Returns

396 RTSJ 2.0 (Final Draft)

PinnableMemory javax.realtime.memory 11.4

a result from the computation.

joinAndEnterPinned(LongSupplier, HighResolutionTime)
Signature
public long
joinAndEnterPinned(LongSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable, HighResolutionTime) except that
the executed method is called get and a long is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

joinAndEnterPinned(DoubleSupplier, HighResolution-
Time)
Signature
public double
joinAndEnterPinned(DoubleSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
ScopedCycleException,
MemoryAccessError

Description

Same as joinAndEnterPinned(Runnable, HighResolutionTime) except that
the executed method is called get and a double is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

RTSJ 2.0 (Final Draft) 397

11 Alternative Memory Areas ScopedConfigurationParameters

11.4.3.3 ScopedConfigurationParameters

public class ScopedConfigurationParameters

Inheritance

java.lang.Object
javax.realtime.ConfigurationParameters
ScopedConfigurationParameters

Description

This is the same as javax.realtime.ConfigurationParameters except an in-
stance of javax.realtime.BoundSchedulable that uses this parameters object
may not access the heap and one that uses the super type may. A VM need only
fully enforce this in interpreted mode.

11.4.3.3.1 Constructors

ScopedConfigurationParameters(int, int, int, int, int, long)

Signature

public

ScopedConfigurationParameters(int messagelength,
int stackTraceDepth,
int classNamelength,
int methodNameLength,
int fileNameLength,
long[] sizes)

throws StaticIllegalStateException

Description
Similar to javax.realtime.ConfigurationParameters.
ConfigurationParameters(int, int, int, int, int, longl[]), except

the receiver may not use the heap.

Throws

StaticIllegalStateException—when the current memory context is a heap
memory.

11.4.3.3.2 Methods

398 RTSJ 2.0 (Final Draft)

ScopedConfigurationParameters javax.realtime.memory 11./

setDefault(ScopedConfigurationParameters)
Signature

public static synchronized void

setDefault (ScopedConfigurationParameters config)

Description

Set the parameters object to be used when none is provided for an instance of
javax.realtime.Schedulable. Setting to null restores the default values.

Parameters
config—the new default parameter object.
Throws

StaticIllegalArgumentException—when config is not allocated in immortal
memory or its configuration parameters are not ScopedConfigurationParam-
eters.

getDefault

Signature
public static synchronized javax.realtime.memory.ScopedConfigurationParameters
getDefault ()

Description

Set the parameters object to be used when none is provided for an instance of
javax.realtime.Schedulable.

Returns
the default parameter object.

setDefaultRunner(ReleaseRunner)
Signature
public static synchronized void
setDefaultRunner (ReleaseRunner runner)
throws StaticIllegalArgumentException

Description

Sets the system default release runner.

Parameters
runner— The runner to be used when none is set. When null, the default release
runner is set to the original system default.
Throws
StaticIllegalArgumentException—when runner is not allocated in immortal
memory or its configuration parameters are not ScopedConfigurationParam-
eters.

RTSJ 2.0 (Final Draft) 399

11 Alternative Memory Areas ScopedMemory

getDefaultRunner

Signature

public synchronized javax.realtime.ReleaseRunner
getDefaultRunner ()

Description

Gets the system default release runner.

Returns
a general runner to be used when none is set.

mayUseHeap

Signature

public boolean
mayUseHeap ()

Description

Returns
true only when this configuration may allocate on the heap and may enter the

11.

Heap.

4.3.4 ScopedMemory

public abstract class ScopedMemory

Inh

eritance

java.lang.Object

javax.realtime.MemoryArea
ScopedMemory

Description

400

ScopedMemory is the abstract base class of all classes dealing with representations
of memory spaces which have a limited lifetime. In general, objects allocated in
scoped memory are freed when, and only when, no schedulable has access to the
objects in the scoped memory.

A ScopedMemory area is a connection to a particular region of memory and
reflects the current status of that memory. The object does not necessarily contain
direct references to the region of memory. That is implementation dependent.

When a ScopedMemory area is instantiated, the object itself is allocated
from the current memory allocation context, but the memory space that object
represents (its backing store) is allocated from memory that is not otherwise
directly visible to Java code; e.g., it might be allocated with the C malloc
function. This backing store behaves effectively as if it were allocated when the

RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

associated scoped memory object is constructed and freed at that scoped memory
object’s finalization.

The ScopedMemory.enter method of ScopedMemory is one mechanism used
to make a memory area the current allocation context. The other mechanism
for activating a memory area is making it the initial memory area for a realtime
thread or async event handler. Entry into the scope is accomplished, for example,
by calling the method:

public void enter (Runnable logic)

where logic is an instance of Runnable whose run() method represents the
entry point of the code that will run in the new scope. Exit from the scope
occurs between the time the runnable.run() method completes and the time
control returns from the enter method. By default, allocations of objects within
runnable.run() are taken from the backing store of the ScopedMemory.

ScopedMemory is an abstract class, but all specified methods include imple-
mentations. The responsibilities of MemoryArea, ScopedMemory and the classes
that extend ScopedMemory are not specified. Application code should not extend
ScopedMemory without detailed knowledge of its implementation. since RTSJ
2.0, moved from javax.realtime.

11.4.3.4.1 Methods

globalBackingStoreSize
Signature
public static long
globalBackingStoreSize ()

Description
Determines the total amount of memory in the global backing store.
Returns
the total amount of global backing store in bytes.
Since RTSJ 2.0

globalBackingStoreRemaining
Signature
public static long
globalBackingStoreRemaining()

RTSJ 2.0 (Final Draft) 401

11 Alternative Memory Areas ScopedMemory

Description

Determines the amount of memory remaining for allocation to new scoped
memories in the backing store of this scoped memory.

Returns
the amount of global backing store remaing in bytes.

Since RTSJ 2.0

globalBackingStoreConsumed
Signature
public static long
globalBackingStoreConsumed ()

Description

Determines the amount of memory consumed by exisiting scoped memories from
the global backing store.

Returns
the amount of backing store available in bytes.

Since RTSJ 2.0

visitScopeRoots(Consumer)
Signature
public static void
visitScopeRoots(java.util.function.Consumer<ScopedMemory> visitor)
throws StaticIllegalArgumentException,
ForEachTerminationException

Description

A means of accessing all live scoped memories whose parent is a perennial
memory area, even those to which no reference exists, such a javax.realtime.
memory.PinnableMemory that is pinned or another javax.realtime.memory.
ScopedMemory that contains a Schedulable. The set may be concurrently modi-
fied by other tasks, but the view seen by the visitor may not be updated to reflect
those changes. The following is guaranteed even when the set is disturbed by
other tasks:
o the visitor shall visit no member more than once,
« it shall visit only scopes that were a member of the set at some time during
the enumeration of the set, and
o it shall visit all the scopes that are not deleted during the execution of the
visitor.
The visitor’s accept method is called on all live roots scopes, so long as the vis-
itor does not throw javax.realtime.ForEachTerminationException. When
that is thrown, the visit terminates. A closure could be used to capture the last
element visited.

402 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

When execution of the visitor’s accept method is terminated abruptly by
throwing an exception, then execution of visitScopedChildren also terminates
abruptly by throwing the same exception.

Parameters

visitor—Determines the action to be performed on each of the children scopes.
Throws

javax.realtime.StaticIllegalArgumentException—when visitor is null.

ForEachTerminationException—when the traversal ends prematurely.

javax.realtime.StaticSecurityException—when the application does not have
permissions to access visit root scopes.

Since RTSJ 2.0

enter
Signature
public void
enter ()
throws ScopedCycleException,
ThrowBoundaryError,
IllegalTaskStateException,
StaticIllegalArgumentException,
MemoryAccessError

Description

Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea) or the enter method exits.

Throws
ScopedCycleException—when this invocation would break the single parent rule.

ThrowBoundaryError—Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable or when this method is invoked during final-
ization of objects in scoped memory and entering this scoped memory area
would force deletion of the execution context that triggered finalization. This
would include the scope containing the execution context, and the scope (if
any) containing the scope containing execution context.

javax.realtime.StaticIllegalArgumentException—null

RTSJ 2.0 (Final Draft) 403

11 Alternative Memory Areas ScopedMemory

MemoryAccessError—when caller is a schedulable that may not use the heap and
this memory area’s logic value is allocated in heap memory.

enter (Runnable)
Signature
public void
enter (Runnable logic)
throws ScopedCycleException,
ThrowBoundaryError,
IllegalTaskStateException,
StaticIllegalArgumentException

Description

Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea) or the
enter method exits.

Parameters
logic—The Runnable object whose run() method should be invoked.
Throws
ScopedCycleException—when this invocation would break the single parent rule.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable or when this method is invoked during final-
ization of objects in scoped memory and entering this scoped memory area
would force deletion of the task that triggered finalization. This would include
the scope containing the task, and the scope (if any) containing the scope
containing task.

javax.realtime.StaticIllegalArgumentException—null

enter(Supplier)
Signature
public T
enter(java.util.function.Supplier<T> logic)
throws ScopedCycleException,
ThrowBoundaryError,
IllegalTaskStateException,
StaticIllegalArgumentException

404 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

Description

Same as enter (Runnable) except that the executed method is called get and
an object is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

enter(BooleanSupplier)
Signature
public boolean
enter (BooleanSupplier logic)
throws ScopedCycleException,
ThrowBoundaryError,
IllegalTaskStateException,
StaticIllegalArgumentException

Description

Same as enter (Runnable) except that the executed method is called get and a
boolean is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

enter (IntSupplier)
Signature
public int
enter (IntSupplier logic)
throws ScopedCycleException,
ThrowBoundaryError,
IllegalTaskStateException,
StaticIllegalArgumentException

Description

Same as enter (Runnable) except that the executed method is called get and
an int is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

RTSJ 2.0 (Final Draft) 405

11 Alternative Memory Areas ScopedMemory

enter(LongSupplier)
Signature
public long
enter (LongSupplier logic)
throws ScopedCycleException,
ThrowBoundaryError,
IllegalTaskStateException,
StaticIllegalArgumentException

Description

Same as enter (Runnable) except that the executed method is called get and a
long is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

enter(DoubleSupplier)
Signature
public double
enter (DoubleSupplier logic)
throws ScopedCycleException,
ThrowBoundaryError,
IllegalTaskStateException,
StaticIllegalArgumentException

Description

Same as enter (Runnable) except that the executed method is called get and a
double is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

executeInArea(Runnable)
Signature
public void
executeInArea(Runnable logic)
throws IllegalTaskStateException,
StaticIllegalArgumentException,
InaccessibleAreaException

Description

406 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

Executes the run method from the logic parameter using this memory area as
the current allocation context. This method behaves as if it moves the allocation
context down the scope stack to the occurrence of this.

Parameters
logic—The runnable object whose run() method should be executed.
Throws
IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

InaccessibleAreaException—when the memory area is not in the schedulable’s
scope stack.

javax.realtime.StaticIllegalArgumentException—when the execution con-
text is an instance of javax.realtime.Schedulable schedulable and logic
1s null.

executeInArea(Supplier)
Signature
public T
executeInArea(java.util.function.Supplier<T> logic)
throws IllegalTaskStateException,
StaticIllegalArgumentException,
InaccessibleAreaException

Description

Same as executeInArea(Runnable) except that the executed method is called
get and an object is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

executeInArea(BooleanSupplier)
Signature
public boolean
executeInArea(BooleanSupplier logic)
throws IllegalTaskStateException,
StaticIllegalArgumentException,
InaccessibleAreaException

Description

Same as executelnArea(Runnable) except that the executed method is called
get and a boolean is returned.

Parameters
logic—the object whose get method will be executed.

RTSJ 2.0 (Final Draft) 407

11 Alternative Memory Areas ScopedMemory

Returns
a result from the computation.

executeInArea(IntSupplier)
Signature
public int
executeInArea(IntSupplier logic)
throws IllegalTaskStateException,
StaticIllegalArgumentException,
InaccessibleAreaException

Description

Same as executeInArea(Runnable) except that the executed method is called
get and an int is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

executeInArea(LongSupplier)
Signature
public long
executeInArea(LongSupplier logic)
throws IllegalTaskStateException,
StaticIllegalArgumentException,
InaccessibleAreaException

Description

Same as executeInArea(Runnable) except that the executed method is called
get and a long is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

executeInArea(DoubleSupplier)
Signature
public double
executeInArea(DoubleSupplier logic)
throws IllegalTaskStateException,
StaticIllegalArgumentException,
InaccessibleAreaException

408 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

Description
Same as executeInArea(Runnable) except that the executed method is called
get and a double is returned.

Parameters

logic—the object whose get method will be executed.
Returns

a result from the computation.

getPortal
Signature
public java.lang.Object
getPortal ()
throws IllegalAssignmentError,
IllegalTaskStateException

Description
Returns a reference to the portal object in this instance of ScopedMemory.
Assignment rules are enforced on the value returned by getPortal as if the
return value were first stored in an object allocated in the current allocation
context, then moved to its final destination.

Throws
javax.realtime.IllegalAssignmentError—when a reference to the portal object
cannot be stored in the caller’s allocation context; that is, when the object is
allocated in a more deeply nested scoped memory than the current allocation
context or not on the caller’s scope stack.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

Returns
a reference to the portal object or null when there is no portal object. The portal
value is always set to null when the contents of the memory are deleted.

getReferenceCount
Signature
public final int
getReferenceCount ()

Description
Returns the reference count of this ScopedMemory.
Note that a reference count of zero reliably means that the scope is not
referenced, but other reference counts are subject to artifacts of lazy/eager
maintenance by the implementation.

Returns
the reference count of this ScopedMemory.

RTSJ 2.0 (Final Draft) 409

11 Alternative Memory Areas ScopedMemory

join
Signature
public void
join()
throws InterruptedException

Description

Waits until the reference count of this ScopedMemory goes down to zero. Returns
immediately when the memory is unreferenced.

Throws
java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

join(HighResolutionTime)

Signature
public void
join(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description

Waits at most until the time designated by the time parameter for the reference
count of this ScopedMemory to drop to zero. Returns immediately when the
memory area is unreferenced.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to join returns immediately.

Parameters
time—When this time is an absolute time, the wait is bounded by that point in
time. When the time is a relative time (or a member of the RationalTime
subclass of RelativeTime) the wait is bounded by a the specified interval from
some time between the time join is called and the time it starts waiting for
the reference count to reach zero.
Throws

410 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

javax.realtime.StaticIllegalArgumentException—when the execution con-
text is a schedulable and time is null.

StaticUnsupportedOperationException—when the wait operation is not sup-
ported using the clock associated with time.

joinAndEnter
Signature
public void
joinAndEnter ()
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
MemoryAccessError

Description

In the error-free case, joinAndEnter combines join() ;enter () ; such that no
enter () from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enters the ScopedMemory and executes the run method from
logic passed in the constructor. When no instance of Runnable was passed to
the memory area’s constructor, the method throws StaticIllegalArgumentEx-
ception immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Throws
java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable or when this method is invoked during final-
ization of objects in scoped memory and entering this scoped memory area

RTSJ 2.0 (Final Draft) 411

11 Alternative Memory Areas ScopedMemory

Th

ja

ja

Me

would force deletion of the task that triggered finalization. This would include
the scope containing the task, and the scope (if any) containing the scope
containing the task.

rowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

vax.realtime.ScopedCycleException—when this invocation would break the
single parent rule.

vax.realtime.StaticIllegalArgumentException—when the execution con-
text is a schedulable and no non-null logic value was supplied to the memory
area’s constructor.

moryAccessError—when caller is a non-heap schedulable and this memory area’s
logic value is allocated in heap memory.

joinAndEnter(HighResolutionTime)

Signature

public void
joinAndEnter (javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
MemoryAccessError

Description

412

In the error-free case, joinAndEnter combines join() ;enter () ; such that no
enter () from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from Runnable object passed
to the constructor. When no instance of Runnable was passed to the mem-
ory area’s constructor, the method throws StaticIllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method has an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then

RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

the calling thread is blocked for at most the amount of time given by time, and
measured by its associated clock. When absolute, then the time delay is until
the indicated value is reached by the clock. When the given absolute time is less
than or equal to the current value of the clock, the call to joinAndEnter behaves
effectively like enter.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
time—The time that bounds the wait.
Throws
javax.realtime.ThrowBoundaryError—when the JVM needs to propagate an
exception allocated in this scope to (or through) the memory area of the
caller. Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

javax.realtime.IllegalTaskStateException—when the execution context is
not an instance of javax.realtime.Schedulable or when this method is
invoked during finalization of objects in scoped memory and entering this
scoped memory area would force deletion of the task that triggered finalization.
This would include the scope containing the task, and the scope (if any)
containing the scope containing the task.

javax.realtime.ScopedCycleException—when the execution context is a sched-
ulable and this invocation would break the single parent rule.

javax.realtime.StaticIllegalArgumentException—when the execution con-
text is a schedulable, and time is null or no non-null logic value was supplied
to the memory area’s constructor.

javax.realtime.StaticUnsupportedOperationException—when the wait oper-
ation is not supported using the clock associated with time.

javax.realtime.MemoryAccessError—when calling schedulable may not use the
heap and this memory area’s logic value is allocated in heap memory.

joinAndEnter(Runnable)
Signature
public void
joinAndEnter (Runnable logic)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,

RTSJ 2.0 (Final Draft) 413

11 Alternative Memory Areas ScopedMemory

ScopedCycleException,
StaticIllegalArgumentException,
MemoryAccessError

Description

In the error-free case, joinAndEnter combines join(); and enter () ; such that
no enter() from another schedulable can intervene between the two method
invocations. The resulting method will wait for the reference count on this
ScopedMemory to reach zero, then enter the ScopedMemory and execute the run
method from logic

When logic is null, the method throws StaticIllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Parameters

logic—The Runnable object which contains the code to execute.
Throws

java.lang.InterruptedException—when this schedulable is interrupted

by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the execution context is not an instance of

javax.realtime.Schedulable or when this method is invoked during final-
ization of objects in scoped memory and entering this scoped memory area
would force deletion of the task that triggered finalization. This would include
the scope containing the task, and the scope (if any) containing the scope
containing the task.

ThrowBoundaryError—thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

javax.realtime.ScopedCycleException—when this invocation would break the

single parent rule.

javax.realtime.StaticIllegalArgumentException—when the execution con-

414

text is a schedulable and logic is null.

RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

joinAndEnter(Supplier)
Signature
public T
joinAndEnter (java.util.function.Supplier<T> logic)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
MemoryAccessError

Description
Same as joinAndEnter (Runnable) except that the executed method is called
get and an object is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(BooleanSupplier)
Signature
public boolean
joinAndEnter (BooleanSupplier logic)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
MemoryAccessError

Description
Same as joinAndEnter (Runnable) except that the executed method is called
get and a boolean is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

Since RTSJ 2.0

joinAndEnter(IntSupplier)
Signature

public int

joinAndEnter (IntSupplier logic)

RTSJ 2.0 (Final Draft) 415

11 Alternative Memory Areas ScopedMemory

throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
MemoryAccessError

Description

Same as joinAndEnter (Runnable) except that the executed method is called
get and an int is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(LongSupplier)
Signature
public long
joinAndEnter (LongSupplier logic)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
MemoryAccessError

Description

Same as joinAndEnter (Runnable) except that the executed method is called
get and a long is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(DoubleSupplier)
Signature
public double
joinAndEnter (DoubleSupplier logic)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,

416 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

StaticIllegalArgumentException,
MemoryAccessError

Description

Same as joinAndEnter (Runnable) except that the executed method is called
get and a double is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinAndEnter (Runnable logic,
javax.realtime.HighResolutionTime<?> time)

throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
MemoryAccessError

Description

In the error-free case, joinAndEnter combines join() ;enter () ; such that no
enter () from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from logic.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to joinAndEnter behaves effectively like enter (Runnable).

The method throws StaticIllegalArgumentException immediately when
logic is null.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

RTSJ 2.0 (Final Draft) 417

11 Alternative Memory Areas ScopedMemory

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
logic—The Runnable object which contains the code to execute.

time—The time that bounds the wait.
Throws
java.lang.InterruptedException—when this schedulable is interrupted
by javax.realtime.RealtimeThread.interrupt() or javax.realtime.
control.AsynchronouslyInterruptedException.fire() while waiting for
the reference count to go to zero.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable or when this method is invoked during final-
ization of objects in scoped memory and entering this scoped memory area
would force deletion of the task that triggered finalization. This would include
the scope containing the task, and the scope (if any) containing the scope
containing the task.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause a javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is preallocated and saves information about the exception
it replaces.

javax.realtime.ScopedCycleException—when the execution context is a sched-
ulable and this invocation would break the single parent rule.

javax.realtime.StaticIllegalArgumentException—when the execution con-
text is a schedulable and time or logic is null.

javax.realtime.StaticUnsupportedOperationException—when the wait oper-
ation is not supported using the clock associated with time.

joinAndEnter(Supplier, HighResolutionTime)
Signature
public P
joinAndEnter(java.util.function.Supplier<P> logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
MemoryAccessError

Description

418 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

Same as joinAndEnter (Runnable, HighResolutionTime) except that the exe-
cuted method is called get and an object is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(BooleanSupplier, HighResolutionTime)
Signature
public boolean
joinAndEnter (BooleanSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
MemoryAccessError

Description

Same as joinAndEnter (Runnable, HighResolutionTime) except that the exe-
cuted method is called get and a boolean is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(IntSupplier, HighResolutionTime)
Signature
public int
joinAndEnter (IntSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
MemoryAccessError

Description

RTSJ 2.0 (Final Draft) 419

11 Alternative Memory Areas ScopedMemory

Same as joinAndEnter (Runnable, HighResolutionTime) except that the exe-
cuted method is called get and an int is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(LongSupplier, HighResolutionTime)
Signature
public long
joinAndEnter (LongSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
I1legalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
MemoryAccessError

Description

Same as joinAndEnter (Runnable, HighResolutionTime) except that the exe-
cuted method is called get and a long is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

joinAndEnter(DoubleSupplier, HighResolutionTime)
Signature
public double
joinAndEnter (DoubleSupplier logic,
javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
IllegalTaskStateException,
ThrowBoundaryError,
ScopedCycleException,
StaticIllegalArgumentException,
StaticUnsupportedOperationException,
MemoryAccessError

Description

420 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

Same as joinAndEnter (Runnable, HighResolutionTime) except that the exe-
cuted method is called get and a double is returned.

Parameters

logic—The object whose get method will be executed.
Returns

a result from the computation.

Since RTSJ 2.0

getParent

Signature
public javax.realtime.MemoryArea
getParent ()

Description

Returns a reference to this scope’s parent scope (e.g., its parent in the single-
parent-rule tree).

Returns
a reference to the next outer scoped memory region on the caller’s scope stack.
o When there is no outer scoped memory and the primordial parent is heap
memory, returns a reference to this.
o When there is no outer scoped memory and the primordial parent is
immortal, or when this is unreferenced and unpinned, returns null
Problem. The single-parent tree is RTT-independent except for the primordial
scope. The type of the primordial scope is RTT-dependent. What should we do
about that? When called from a RTT that has entered this, the above rules
make some sense, but what if the caller has not even entered the scope, should
we throw an exception? Or just return null? I think the right solution is to
return this whatever the type of the primordial scope. The app can then know
that null means the scope is not pinned and not referenced, and this means
the parent is either heap or immortal. At that point, the app can learn what it
wants to know by just finding what memory area contains the scope object.

Since RTSJ 2.0

visitNestedScopes(Consumer)
Signature
public void
visitNestedScopes(java.util.function.Consumer<ScopedMemory> visitor)
throws StaticIllegalArgumentException,
ForEachTerminationException

Description

RTSJ 2.0 (Final Draft) 421

11 Alternative Memory Areas ScopedMemory

A means of accessing all live nested scoped memories parented in this scoped
memory, even those to which no reference exists, such a javax.realtime.
memory.PinnableMemory that is pinned or another javax.realtime.memory.
ScopedMemory that contains a Schedulable. It has the same semantics as the
method visitScopeRoots, except for the following:

o what scoped memories are visited,

o the memory area must be reachable from the current scope stack, and

o there is not security manager check.

Parameters

visitor—Determines the action to be performed on each of the children scopes.
Throws

javax.realtime.StaticIllegalArgumentException—when visitor is null.

ForEachTerminationException—when the traversal ends prematurely.

Since RTSJ 2.0

newArray(Class, int)
Signature
public java.lang.Object
newArray(java.lang.Class<?> type,
int number)

Description

Allocates an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type—The class of the elements of the new array. To create an array of a primitive
type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)
number—The number of elements in the new array.
Throws
javax.realtime.StaticIllegalArgumentException—null
javax.realtime.StaticOutOfMemoryError—null

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

InaccessibleAreaException—when the memory area is not in the schedulable’s
scope stack.

Returns
a new array of class type, of number elements.

newlInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)

422 RTSJ 2.0 (Final Draft)

ScopedMemory javaz.realtime.memory 11.4

throws IllegalAccessException,
StaticIllegalArgumentException,
ExceptionInInitializerError,
StaticOutOfMemoryError,
InstantiationException,
IllegalTaskStateException,
InaccessibleAreaException

Description

Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type—The class of which to create a new instance.
Throws
IllegalAccessException—The class or initializer is inaccessible.

javax.realtime.StaticIllegalArgumentException—null

ExceptionInInitializerError—when an unexpected exception has occurred in
a static initializer.

javax.realtime.StaticOutOfMemoryError—null

InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, or it is an array.

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

InaccessibleAreaException—when the memory area is not in the schedulable’s
scope stack.

Returns
a new instance of class type.

newlInstance(Constructor, Object)
Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,
java.lang.0Object[] args)
throws IllegalAccessException,
InstantiationException,
InvocationTargetException

Description

Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c—T The constructor for the new instance.

args—An array of arguments to pass to the constructor.

RTSJ 2.0 (Final Draft) 423

11 Alternative Memory Areas ScopedMemory

Throws

IllegalAccessException—when the class or initializer is inaccessible under Java
access control.

InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, it is an array.

javax.realtime.StaticOutOfMemoryError—null

javax.realtime.StaticIllegalArgumentException—null

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

InvocationTargetException—when the underlying constructor throws an excep-
tion.

InaccessibleAreaException—when the memory area is not in the schedulable’s
scope stack.

Returns
a new instance of the object constructed by c.

setPortal(Object)
Signature
public void
setPortal (Object object)
throws IllegalTaskStateException,
IllegalAssignmentError,
InaccessibleAreaException

Description

Sets the portal object of the memory area represented by this instance of Scoped-
Memory to the given object. The object must have been allocated in this Scoped-
Memory instance.

Parameters

object—The object which will become the portal for this. When null the previous
portal object remains the portal object for this or when there was no previous
portal object then there is still no portal object for this.

Throws

IllegalTaskStateException—when the execution context is not an instance of
javax.realtime.Schedulable.

IllegalAssignmentError—when the execution context is an instance of javax.
realtime.Schedulable, and object is not allocated in this scoped memory
instance and not null.

InaccessibleAreaException—when the execution context is a schedulable, this
memory area is not in the caller’s scope stack and object is not null.

424 RTSJ 2.0 (Final Draft)

ScopedMemoryParameters javax.realtime.memory 11.4

finalize

Signature
protected final void
finalize()
throws Throwable

Description

Since there is no specified way to release the memory of a memory area explicitly,
this is done by its finalize method.

Throws
InternalError—when this is currently in use (i.e., it has a non-zero enter count.)

toString

Signature
public java.lang.String
toString()

Description

Returns a user-friendly representation of this ScopedMemory of the form <class-
name>Q@<num> where <class-name> is the name of the class, e.g. javax.realtime.
memory . ScopedMemory, and <num> is a number that uniquely identifies this scoped
mMemory area.

Returns
the string representation

11.4.3.5 ScopedMemoryParameters

public class ScopedMemoryParameters

Inheritance

java.lang.Object
javax.realtime.MemoryParameters
ScopedMemoryParameters

Description

Extends memory parameters to provide limits for scoped memory.

See Section javax.realtime.MemoryParameters

Since RTSJ 2.0

11.4.3.5.1 Constructors

RTSJ 2.0 (Final Draft) 425

11 Alternative Memory Areas ScopedMemoryParameters

ScopedMemoryParameters(long, long, long, long, long, long)

Signature
public
ScopedMemoryParameters(long maxInitialArea,
long maxImmortal,
long allocationRate,
long maxContainingArea,
long maxInitialBackingStore,
long maxGlobalBackingStore)
throws StaticIllegalArgumentException

Description

Creates a ScopedMemoryParameters instance with the given values that can
allow access to any ScopedMemory

Parameters
maxInitialArea—A limit on the amount of memory the schedulable may allo-
cate in its initial scoped memory area. Units are in bytes. When zero, no
allocation is allowed in the memory area. When the initial memory area is
not a ScopedMemory, this parameter has no effect. To specify no limit, use
UNLIMITED.

maxImmortal—A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in
immortal. To specify no limit, use UNLIMITED.

allocationRate—A limit on the rate of allocation in the heap. Units are in bytes
per second of wall clock time. When allocationRate is zero, no allocation is
allowed in the heap. To specify no limit, use UNLIMITED. Measurement starts
when the schedulable is first released for execution; not when it is constructed.
Enforcement of the allocation rate is an implementation option. When the
implementation does not enforce allocation rate limits, it treats all positive
allocation rate limits as UNLIMITED.

maxContainingArea—A limit on the amount of memory the schedulable may
allocate in memory area where it was created. Units are in bytes. When zero,
no allocation is allowed in the memory area. When the containing memory
area is not a ScopedMemory, this parameter has no effect. To specify no limit,
use UNLIMITED.

maxInitialBackingStore—A limit on the amount of backing store the schedulable
may allocate from backing store of its initial memory area when that memory
area is an instance of StackedMemory, in bytes. When zero, no allocation
is allowed in that backing store. Backing store that is returned to the area
backing store is subtracted from the limit. To specify no limit, use UNLIMITED.

maxGlobalBackingStore—A limit on the amount of backing store the schedulable
may allocate from the global backing store to scoped memory areas in bytes.
When zero, no allocation is allowed in the memory area. To specify no limit,
use UNLIMITED.

426 RTSJ 2.0 (Final Draft)

ScopedMemoryParameters javax.realtime.memory 11.4

Throws
javax.realtime.StaticIllegalArgumentException—when any value other less
than zero is passed as the value of maxInitialArea, maxImmortal, alloca-
tionRate, maxBackingStore, or maxContainingArea.

ScopedMemoryParameters(long, long, long, long)
Signature
public
ScopedMemoryParameters(long maxInitialArea,
long maxImmortal,
long maxContainingArea,
long maxInitialBackingStore)
throws StaticIllegalArgumentException

Description

Same as ScopedMemoryParameters(maxInitialArea, maxImmortal, O, max-—
ContainingArea, maxInitialBackingStore, 0). This constructor disallows
root StackedMemory, LTMemory, and Heap allocation.

ScopedMemoryParameters(long, long, long)
Signature
public
ScopedMemoryParameters(long maxInitialArea,
long maxImmortal,
long maxContainingArea)
throws StaticIllegalArgumentException

Description
Same as ScopedMemoryParameters(maxInitialArea, maxImmortal,
MemoryParameters.UNLIMITED, maxGlobalBackingStore, 0, 0). This

constructor disallows host StackedMemory and LTMemory allocation.

11.4.3.5.2 Methods

getMaxGlobalBackingStore

Signature
public long
getMaxGlobalBackingStore ()

Description

Determines the limit on backing store for this task from the global pool.

RTSJ 2.0 (Final Draft) 427

11 Alternative Memory Areas StackedMemory

Returns
the limit on backing store.

getMaxInitialBackingStore
Signature
public long
getMaxInitialBackingStore ()

Description

Determines the limit on backing store for this task from its parent StackedMemory.

Returns
the limit on backing store.

getMaxContainingArea
Signature
public long
getMaxContainingArea()

Description

Determines the limit on allocation in the area where the task was created.

Returns
the limit on allocation in the area where the task was created.

11.4.3.6 StackedMemory

public class StackedMemory

Inheritance

java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
StackedMemory

Description

StackedMemory implements a scoped memory allocation area and backing store
management system. It is designed to allow for safe, fragmentation-free manage-
ment of scoped allocation with certain strong guarantees provided by the virtual
machine and runtime libraries.

Each StackedMemory instance represents a single object allocation area and
additional memory associated with it in the form of a backing store. The backing
store associated with a StackedMemory is a fixed-size memory area allocated
at or before instantiation of the StackedMemory. The object allocation area is
taken from the associated backing store, and the backing store may be further

428 RTSJ 2.0 (Final Draft)

StackedMemory javaz.realtime.memory 11.4

subdivided into additional StackedMemory allocation areas or backing stores by
instantiating additional StackedMemory objects.

When a StackedMemory is created with a backing store, the backing store
may be taken from a notional global backing store, in which case it is effectively
immortal, or it may be taken from the enclosing StackedMemory’s backing store
when the scope in which it is created is also a StackedMemory. In this case it
is returned to its enclosing scope’s backing store when the object is finalized.
Implementations should return the space occupied by backing stores taken from
the global backing store when their associated StackedMemory object is finalized.

These backing store semantics divide instances of StackedMemory into two
categories:

» host — this denotes a StackedMemory with an object allocation area created

in a new backing store, allocated either from the global store or from a
parent StackedMemory’s backing store, and

e guest — this in turn indicates a StackedMemory with an object allocation
area taken directly from a parent StackedMemory’s backing store without
creating a sub-store.

In addition, there is one distinguished status for StackedMemory object: root.
A root StackedMemory is a host StackedMemory created with a backing store
drawn directly from the global backing store, created in an allocation context of
some type other than StackedMemory.

Creation of a StackedMemory shall fail with a javax.realtime.
StaticOutOfMemoryError when the current javax.realtime.Schedulable is
configured with a limit on ScopedMemoryParameters.maxGlobalBackingStore
and creation of the root StackedMemory would exceed that limit.

Creation of a StackedMemory is subject to additional restrictions when the
current Schedulable is configured with an explicit initial memory area of type
StackedMemory. In this case, the following rules apply.

o Construction of a root StackedMemory will fail and throw a Stati-
cOutOfMemoryError regardless of the value of the Schedulable’s
ScopedMemoryParameters.maxGlobalBackingStore.

o Construction of a StackedMemory from a current allocation context that is
not the Schedulable’s explicit initial memory area or one of its descendants
in the scope stack will fail and throw StaticOutOfMemoryError.

o A maximum of ScopedMemoryParameters.maxInitialBackingStore bytes
may be allocated directly from the backing store of the Schedulable’s
explicit initial memory area over the lifetime of the Schedulable. Any
operation that would exceed this limit (whether by resizing the alloca-
tion area of the explicit initial memory area or a guest area in the same
backing store, or by allocating a new StackedMemory with the explicit ini-
tial memory area as the current allocation context) will fail and throw a
StaticOutOfMemoryError.

Allocations from a StackedMemory object allocation area are guaranteed to
run in time linear in the size of the allocation. All memory for the backing store
must be reserved at object construction time.

StackedMemory memory areas have two additional stacking constraints in

RTSJ 2.0 (Final Draft) 429

11 Alternative Memory Areas StackedMemory

addition to the single parent rule, designed to enable fragmentation-free manipu-
lation:

« a StackedMemory that is created when another StackedMemory is the current
allocation context can only be entered from the same allocation context in
which it was created, and

e a guest StackedMemory may not be created from a StackedMemory that
currently has another child area that is also a guest StackedMemory, i.e., a
StackedMemory can have at most one direct child that is a guest Stacked-
Memory.

The StackedMemory constructor semantics also enforce the property that
a StackedMemory may not be created from another StackedMemory allocation
context unless it is allocated from that context’s backing store as either a host or
guest area.

The backing store of a StackedMemory behaves as if any StackedMemory
object allocation areas are at the “bottom” of the backing store, while the backing
stores for enclosed StackedMemory areas are taken from the “top” of the backing
store.

There may be an implementation-specific memory overhead for creating a
backing store of a given size. This means that creating a StackedMemory with
a backing store of exactly the remaining available backing store of the current
StackedMemory may fail with an javax.realtime.StaticOutOfMemoryError.
This overhead must be bounded by a constant.

Since RTSJ 2.0

11.

4.3.6.1 Constructors

St

ackedMemory(long, long, Runnable)

Signature

public

StackedMemory(long scopeSize,
long backingSize,
Runnable logic)

Description

Creates a host StackedMemory with an object allocation area and backing store
of the specified sizes, bound to the specified Runnable. The backing store is
allocated from the currently active memory area when it is also a StackedMemory,
and the global backing store otherwise. The object allocation area is allocated
from the backing store.

Parameters
scopeSize—Size of the allocation area within the backing store.

backingSize—Size of the total backing store.

430

RTSJ 2.0 (Final Draft)

StackedMemory javaz.realtime.memory 11.4

logic—Runnable to be entered using this as its current memory area when
enter () is called.
Throws
javax.realtime.StaticIllegalArgumentException—when either scopeSize or
backingSize is less than zero, or when scopeSize is too large to be allocated
from a backing store of size backingSize.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
available to reserve the requested backing store.

javax.realtime.IllegalTaskStateException—when the current Schedulable
has a StackedMemory as its explicit initial scoped memory area and that area
is not on the scope stack.

StackedMemory (SizeEstimator, SizeEstimator, Runnable)
Signature
public
StackedMemory (SizeEstimator scopeSize,
SizeEstimator backingSize,
Runnable logic)

Description

Equivalent to StackedMemory(long, long, Runnable) with argument list
(scopeSize.getEstimate(), backingSize.getEstimate(), runnable).

Parameters
scopeSize—SizeEstimator indicating the size of the object allocation area within
the backing store.

backingSize—SizeEstimator indicating the size of the total backing store.

logic—Runnable to be entered using this as its current memory area when
enter () is called.
Throws
javax.realtime.StaticIllegalArgumentException—when either scopeSize or
backingSize is null, or when scopeSize.getEstimate() is too large to be
allocated from a backing store of size backingSize.getEstimate().

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
available to reserve the requested backing store.

javax.realtime.IllegalTaskStateException—when the current Schedulable
has a StackedMemory as its explicit initial scoped memory area and that area
is not on the scope stack.

StackedMemory (long, long)
Signature
public
StackedMemory (long scopeSize,
long backingSize)

RTSJ 2.0 (Final Draft) 431

11 Alternative Memory Areas StackedMemory

Description

Equivalent to StackedMemory(long, long, Runnable) with argument list
(scopeSize, backingSize, null).

Parameters
scopeSize—Size of the allocation area within the backing store.
backingSize—Size of the total backing store.
Throws
javax.realtime.StaticIllegalArgumentException—when either scopeSize or
backingSize is less than zero, or when scopeSize is too large to be allocated
from a backing store of size backingSize.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
available to reserve the requested backing store.
javax.realtime.IllegalTaskStateException—when the current Schedulable
has a StackedMemory as its explicit initial scoped memory area and that area
is not on the scope stack.

StackedMemory(SizeEstimator, SizeEstimator)
Signature
public
StackedMemory(SizeEstimator scopeSize,
SizeEstimator backingSize)

Description

Equivalent to StackedMemory(long, long, Runnable) with argument list
(scopeSize.getEstimate(), backingSize.getEstimate(), null).

Parameters
scopeSize—SizeEstimator indicating the size of the object allocation area within
the backing store.
backingSize—SizeEstimator indicating the size of the total backing store.
Throws
javax.realtime.StaticIllegalArgumentException—when either scopeSize or
backingSize is null, or when scopeSize.getEstimate() is too large to be
allocated from a backing store of size backingSize.getEstimate().
javax.realtime.StaticOutOfMemoryError—when there is insuffi