
aicas GmbH

JamaicaAMS User Documentation

Version 1.0.0
11 April 2022

JamaicaAMS User Documentation

c© 2018–2022 aicas GmbH, Karlsruhe. All rights reserved.

Every effort has been made to ensure that all statements and information contained in this document are accurate. How-
ever, aicas GmbH accepts no liability for any error or omission therein.

This product includes software developed by IAIK of Graz University of Technology. This software is based in part on
the work of the Independent JPEG Group.

Portions of this software are copyright c© 2020 The FreeType Project (www.freetype.org). All rights reserved.

Java and all Java-based trademarks are registered trademarks of Oracle America, Inc. All other brands or product names
are trademarks or registered trademarks of their respective holders.

The software included in this product contains copyrighted software that is licensed under the GNU General Public
License (GPL) or GNU Lesser General Public License (LGPL). You may obtain the complete corresponding source code
from us for a period of three years after our last shipment of this product. We will charge 30 EUR for the creation and
shipment of a physical machine-readable copy of the source code.

Please contact us at the following address for payment instructions:

aicas GmbH
Emmy-Noether-Straße 9
76131 Karlsruhe
Germany

Email: support@aicas.com

This offer is valid to anyone in receipt of this information.

Page ii Version 1.0.0 11 April 2022

Contents

1 JamaicaAMS Framework 5

2 Getting Started 9
2.1 System Requirements . 10

2.1.1 Host System . 10

2.1.2 Target System . 11

2.2 Installation . 11

2.3 Execution . 12

2.3.1 Launching . 12

2.3.2 Environment Variables . 13

2.3.3 Interaction . 14

2.3.4 Exit Codes . 15

2.3.5 Example Bundles . 16

2.3.5.1 How to install the Examples . 16

2.3.5.2 Importing the Examples into Eclipse 16

2.3.5.3 How to build the Examples . 17

3 Tools and Components 19
3.1 Development . 19

3.1.1 Emulator . 20

3.1.2 PMD and SpotBugs . 20

3.2 Deployment . 23

3.2.1 jarsigner . 23

3.3 Configuration . 24

3.3.1 Profiling and JamaicaAMS . 24

3.3.2 Bundle Configuration . 25

3.3.2.1 Configurator . 25

3.3.2.2 Configuration Admin Service . 26

1

JamaicaAMS User Documentation

4 Security 29

4.1 Terms and Definitions . 29

4.1.1 Public/Private Key Pair . 29

4.1.2 Certificates and Chains . 30

4.2 Signed JAR File . 31

4.3 Authentication and Permissions . 33

4.4 Activating Security in JamaicaAMS . 33

4.5 An Example of Security Configuration . 34

4.5.1 Sign the Example Bundle . 35

4.5.2 Configure the System Properties . 35

4.5.3 Configure the Policy . 36

4.5.4 Set-Up and Operation . 36

5 OSGi Framework and Bundles 37

5.1 Framework Layers . 37

5.2 Bundle Lifecycle . 38

5.3 Service Orientation . 38

5.4 Controlling the Bundles . 39

6 How to write a Bundle with Eclipse 41

6.1 Prerequisites . 41

6.2 Bundle Tutorial . 41

6.2.1 Create a new Plug-In Project . 41

6.2.2 Make Yourself Familiar with the UI . 42

6.2.3 Implement the Functionality . 42

6.2.4 Run the Bundle on the Integrated Framework 42

6.2.5 Deployment . 43

7 Debugging Bundles with Eclipse 45

7.1 Prerequisites . 45

7.2 Background . 45

7.3 Setup of the Debugging Environment . 46

7.3.1 Run the Debug Server . 47

7.3.2 Run the Debug Client . 47

Page 2 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

8 JamaicaAMS Runtime Reference 49
8.1 JamaicaAMS Properties . 49

8.1.1 Config Properties . 49

8.1.2 System Properties . 51

8.1.3 Logger Properties . 52

8.2 Budgets . 52

8.3 Thread Count . 54

8.3.1 Bundle Threads . 55

8.4 Usage of the Java Native Interface (JNI) . 57

9 Information for Specific Targets 59
9.1 Linux . 59

9.1.1 Shared Libraries . 59

9.1.2 Random Number Generator . 60

11 April 2022 Version 1.0.0 Page 3

JamaicaAMS User Documentation

Page 4 Version 1.0.0 11 April 2022

Chapter 1

JamaicaAMS Framework

JamaicaAMS is a modular and extensible application framework, especially designed and tailored for
Industrial IoT use cases. It provides a powerful runtime environment for Java-based applications and
components, thereby supporting not only static but also highly dynamic and distributed application
scenarios.

JamaicaAMS targets in particular at heterogeneous embedded and mobile devices with sparse re-
sources, providing performance guarantees for their applications during runtime. However, high-end
servers and computational ecosystems are feasible target platforms as well, which also can take ad-
vantage of the integrated framework features and technology in a larger scaled fashion.

The strength of JamaicaAMS results from the combination of two solid open standards: OSGiTM1,
that specifies a software architecture to create modular applications and services, called bundles, and
the Real-Time Specification for Java (RTSJ).

The JamaicaAMS Application Management System (AMS) extends Apache Felix (currently version
7.0.3), which is an open source implementation of the OSGi specification, in its Core Release 8. The
Apache framework implements standardized mechanisms for lifecycle and dependency management
of components, service abstractions as well as standardized security and isolation mechanisms.

By implementing the OSGi open technology, JamaicaAMS allows for a seamless and automated
integration, configuration and update of application components on a big amount of remote devices,
at once and during runtime. By eliminating system downtime for maintenance and updates, it vastly
improves the availability of services and avoids disruption, for instance in production, automation
and consumer processes.

Moreover, JamaicaAMS relies on the robustness of JamaicaVM, aicas’ hard realtime Java-based Vir-
tual Machine. Based on the RTSJ specification, JamaicaVM implements mechanisms for realtime
programming and execution. Therefore JamaicaAMS permits to explicitly configure and enforce re-
source budgets for applications and their components during runtime. Thus, even if the system might
be overloaded and misbehaving, the framework and the resource-isolated applications are ensured
to operate in a reliable fashion. This is especially useful for mixed critical- and control automation
systems where, for example, the sampling of sensors and the control of actuators must be guaranteed
in either case.

1OSGiTMis a trademark, registered trademark or service mark of the OSGi Alliance.

5

JamaicaAMS User Documentation

JamaicaAMS can be complemented, when used together with a set of specialized tools and features
(see Figure 1.1) which support development, analysis, build, deployment, configuration and main-
tenance of Java-based applications and components. Integration with well established development
environments, like the Eclipse IDE, speeds up the implementation process, shortening the time-to-
market of future IoT applications.

Cloud connectivity features can easily be integrated into JamaicaAMS to allow for a central platform
and device management by remote operators.

Industrial IoT use cases are especially supported by automation bus interfaces, like Modbus. Finally,
a custom component repository can be easily deployed and integrated, providing a common code-
base for a multitude of devices in an app-store fashion. Comprising those features and functionalities
based on open standards, JamaicaAMS provides a powerful and portable platform for a variety of
innovative, performance critical, highly distributed and dynamic industrial and IoT scenarios.

This document provides information about particular technologies and components included in the
JamaicaAMS. It assumes from its readers a certain knowledge about the OSGi standard. However,
for those who are not familiar with the specification, Section 5 offers a brief introduction to the OSGi
layers and the core concept of bundle lifecycle, which are central to the development and management
of modular applications.

For additional information or conceptual clarification, please see the OSGi Core Release 8 Specifi-
cation [5].

JamaicaAMS

Figure 1.1: JamaicaAMS Framework and its components

Page 6 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

Typographic Conventions

Throughout this manual the following typographic conventions were applied.

For items related to the file system, like paths and files:

path

filename

For references in code, like classes and methods:

class

method

Commands are given like:

“command”

Names of components, modules or bundles appear like:

“component”

“module”

“bundle”

Properties, Parameters, Environment Variables, and other items that require definition are written
like:

property
VARIABLE
Output in terminal sessions is reproduced in monospaced. User inputs are designated by a prompt:

> input

Please note that the placeholder “< >” is to be replaced by information pertinent to the particular
deployment in question, e.g., <path to JamaicaAMS> should be replaced with the current path
to the JamaicaAMS directory in the user’s specific filesystem.

11 April 2022 Version 1.0.0 Page 7

JamaicaAMS User Documentation

Page 8 Version 1.0.0 11 April 2022

Chapter 2

Getting Started

JamaicaAMS comprises the interaction of three parts: a target runtime, that runs on the edge devices;
the development components, which include, apart from the host runtime and libraries, the IDE of
choice and tools; and the components that take care of connecting with cloud services.

This section offers information for a straight start, on how to install and execute JamaicaAMS on a
target platform.

The current file structure of the JamaicaAMS distribution is depicted below. Please note that
<target> and <host>, under <setup>, designate the folders containing binaries for (target)
devices running JamaicaAMS and for a (host) platform to be used to develop bundles.

jamaica-ams
|-- ApacheLicense2.txt
|-- doc
| |-- build.info
| |-- documentation.pdf
| |-- KNOWN_ISSUES
| ‘-- Release_Notes
|-- example
| |-- primes-<version>.jar
| |-- primes-<version>-sources.zip
| |-- primes-with-budget-<version>.jar
| ‘-- primes-with-budget-<version>-sources.zip
|-- NOTICE.txt
‘-- setup

|-- bundle.1
| |-- configuration-admin-<version>.jar
| |-- org.apache.felix.cm.json-<version>.jar
| |-- org.apache.felix.configurator-<version>.jar
| |-- org.apache.felix.converter-<version>.jar
| |-- org.apache.felix.log-<version>.jar
| |-- org.apache.sling.commons.johnzon-<version>.jar
| |-- org.osgi.util.function-<version>.jar

9

JamaicaAMS User Documentation

| |-- osgi-log-writer-<version>.jar
| ‘-- security-<version>.jar
|-- bundle.2
| ‘-- policy-file-reader-<version>.jar
|-- bundle.3
| |-- org.apache.felix.gogo.command-<version>.jar
| |-- org.apache.felix.gogo.runtime-<version>.jar
| ‘-- org.apache.felix.gogo.shell-<version>.jar
|-- conf
| |-- all.policy
| |-- config.properties
| |-- logging.properties
| |-- osgi.all.policy
| ‘-- system.properties
|-- <target>
| ‘-- bin
| |-- jams
| |-- jamsdi
| |-- jamsi
| ‘-- jamsp
‘-- <host>

‘-- bin
|-- emulator
‘-- emulatordi

9 directories, 34 files

2.1 System Requirements

The development and execution environment of JamaicaAMS described in this chapter can be divided
into two parts, namely the host system and the target system. The following are the necessary system
requirements in order to practice the instructions which will be given in the rest of this document.

2.1.1 Host System

To develop applications with the JamaicaAMS framework with the tools provided, we recommend
the following configuration:

• Hardware: x86-64 processor, with at least 2 GHz CPU clock and 4GB RAM

• Operating System: CentOS 7 (64-bit)

Page 10 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

2.1.2 Target System

JamaicaAMS is capable of running on various combinations of hardware architectures and operating
systems. The following example describes one of the typical configurations for running JamaicaAMS
on an embedded target device.

• Hardware: ARM Cortex A53, 1.2 GHz CPU clock, 1GB SDRAM

• Operating System: Linux Kernel 4.14

Note that...

Running on a target with much less computation power is possible or even more common in a typical JamaicaAMS
use case. For more detailed information about the supported targets, please contact support@aicas.com.

2.2 Installation

JamaicaAMS is distributed in the form of a ZIP file. In order to install JamaicaAMS simply unzip
the file and copy the created directory structure to the target platform. For example on a Linux target:

> unzip JamaicaAMS-<version>-linux-armv7-le-raspberrypi-full.zip

The JamaicaAMS directory structure is as depicted below. Please note that the placeholder between
“< >” needs to be replaced by information pertinent to the particular deployment in question, e.g.,
in Figure 2.1, the current path to the JamaicaAMS directory.

Directory Contents
<path to JamaicaAMS>/doc documentation
<path to JamaicaAMS>/example examples
<path to JamaicaAMS>/setup/bundle.i 1 auto-deploy OSGi bundles
<path to JamaicaAMS>/setup/conf configuration files
<path to JamaicaAMS>/setup/<host>/bin executable binaries
<path to JamaicaAMS>/setup/<target>/bin executable binaries

Figure 2.1: JamaicaAMS directory structure.

1Here, the OSGi bundles from bundle.i are assigned start level i.

11 April 2022 Version 1.0.0 Page 11

JamaicaAMS User Documentation

2.3 Execution

The JamaicaAMS distribution contains four executable binaries in the bin directory: jamsi (inter-
preted), jams (default), jamsdi (debug interface) and jamsp (profiling).

The jamsi executable should be used when debugging problems or issues, because it provides more
detailed output in error cases; the jams executable contains ahead-of-time compiled classes which
may lead to better performance. The jamsdi executable provides remote debugging functionality
and the jamsp executable should be used to collect information on the amount of runtime spent for
the execution of individual methods.

2.3.1 Launching

The binaries can be launched as follows, where jams is used for concreteness and jamsi can be
launched the same way:

> cd <path-to-root-directory-of-JamaicaAMS>/setup

./<target>/bin/jams [-c <config-properties-file>] \
[-s <system-properties-file>] \
[-b <bundle-cache-dir>]

Here, the parameters have the following meaning:

-c <config-properties-file>

points to a framework configuration file. This should typically be set to <path to
JamaicaAMS>/conf/config.properties. That file contains a description of the most im-
portant framework configuration properties and can be adapted if needed. If not given, it defaults to
./conf/config.properties.

-s <system-properties-file>

points to a system configuration file. This makes it possible to set system properties when running
JamaicaAMS. The JamaicaAMS distribution contains a sample system configuration file that shows
how to enable security. If not given, it defaults to ./conf/system.properties.

-b <bundle-cache-dir>

specifies the cache directory for the OSGi bundles. If not given, it defaults to
./jamaica-ams-cache.

Apart from those, the following parameters are also available:

-version prints the version of JamaicaAMS and exits.

-help prints usage information of JamaicaAMS and exits.

Page 12 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

2.3.2 Environment Variables

The following environment variables are recognized by JamaicaAMS:

• JAMAICA_AMS_HEAP_SIZE specifies the Java heap size to be used by JamaicaAMS. The
Java heap is allocated at startup and stays at the fixed size specified by this environment vari-
able. Default: 64M

• JAMAICA_AMS_JAVA_STACK_SIZE specifies the Java stack size to be used by Java
threads. Values that are too small can cause a Java StackOverflowError to be thrown.
Default: 16K

• JAMAICA_AMS_NATIVE_STACK_SIZE specifies the C stack size to be used by Java
threads. Values that are too small can cause a Java StackOverflowError to be thrown
or the system to crash. Default: OS-dependent (128K on Linux, 64K on QNX, 80K on Win-
dows)

• JAMAICA_AMS_NUM_THREADS specifies the number of Java threads that JamaicaAMS
should create on startup. No further Java threads will be created once this number of active
threads has been reached. Default: 80

Please note that JamaicaAMS inherits from JamaicaVM the limitation of 511 as maximum
number of Java threads.

11 April 2022 Version 1.0.0 Page 13

JamaicaAMS User Documentation

2.3.3 Interaction

To interact with JamaicaAMS, Apache Felix Gogo shell is supplied as auto-deploy bundle. After
launching JamaicaAMS, type “help” into the shell to see the list of the available commands and
“help <command-name>”, to get specific additional information. Figure 2.2 shows a list of the
commands.

felix:bundlelevel gogo:cat
felix:cd gogo:each
felix:frameworklevel gogo:echo
felix:headers gogo:format
felix:help gogo:getopt
felix:inspect gogo:gosh
felix:install gogo:grep
felix:lb gogo:history
felix:log gogo:not
felix:ls gogo:set
felix:refresh gogo:sh
felix:resolve gogo:source
felix:start gogo:tac
felix:stop gogo:telnetd
felix:uninstall gogo:type
felix:update gogo:until
felix:which

Figure 2.2: Apache Felix Gogo shell commands

For further details, please refer to the Apache Felix Gogo Shell documentation [1].

Page 14 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

2.3.4 Exit Codes

Figure 2.3 shows the exit codes that are currently defined and used by JamaicaAMS, followed by a
complete list of exit codes which are specific to the Jamaica Virtual Machine.

JamaicaAMS Exit Codes
0 Normal termination
2 Error while parsing arguments
3 Framework implementation was not found
4 Error while initializing the framework
5 Evaluation timeout has expired

JamaicaVM Standard Exit Codes
0 Normal termination
1 Exception or error in Java program

2..63 Application specific exit code from System.exit()

JamaicaVM Error Codes
64 JamaicaVM failure
65 VM not initialized
66 Insufficient memory
67 Stack overflow
68 Initialization error
69 Setup failure
70 Clean-up failure
71 Invalid command line arguments
72 No main class
73 Exec() failure
74 Lock memory failed

JamaicaVM Internal Errors
100 Serious error: HALT called
101 Internal error
102 Internal test error
103 Function or feature not implemented
104 Exit by signal
105 Unreachable code executed
130 POSIX signal SigInt
143 POSIX signal SigTerm
255 Unexpected termination

Figure 2.3: Summary of the exit codes.

11 April 2022 Version 1.0.0 Page 15

JamaicaAMS User Documentation

2.3.5 Example Bundles

The JamaicaAMS distribution contains two examples bundles that can be used immediately:
“primes”, “primes-with-budget”. The first example, “primes”, will simply calculate prime numbers
and print a report in the console each time 1000 prime numbers are calculated, showing how long the
calculation took (see Figure 2.4).

g! start 12
Computed 1000 primes in 626ms!
Computed 1000 primes in 903ms!
Computed 1000 primes in 1194ms!
Computed 1000 primes in 1508ms!
Computed 1000 primes in 1796ms!
Computed 1000 primes in 2121ms!
Computed 1000 primes in 2423ms!
Computed 1000 primes in 2725ms!
Computed 1000 primes in 3044ms!
stop 12
Stopping the worker thread
g!

Figure 2.4: Example of a bundle that calculates prime numbers

The bundle “primes-with-budget” does the exact same calculation, but with a CPU Budget set to 5%.
For further information about Budgets in JamaicaAMS, please refer to Section 8.2.

2.3.5.1 How to install the Examples

In order to use the bundles provided as examples, those have to be installed using the GoGo Shell
“install” command.

> install <path to JAR>

After they are successfully installed, they can be run with the GoGo Shell “start #” command,
being “#” a placeholder for the Bundle ID. E.g.:

> start 12

2.3.5.2 Importing the Examples into Eclipse

The example bundles contained in the JamaicaAMS distribution are Maven Projects. To import these
correctly into Eclipse, the following steps have to be taken:

• Extract the example bundle source (zip file)

Page 16 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

Figure 2.5: Importing the examples in Eclipse

• In Eclipse, proceed with Select → File → Import → Maven → Existing Maven Projects
(see Figure 2.5).

• In the following Window, select Browse and navigate to the extracted source folder, clicking
the [OK] button. Please note that the pom.xml will be automatically selected.

• Click the [Finish] button and the example bundle will be imported as a Maven Project into
Eclipse

After the successful import, the project can be modified.

2.3.5.3 How to build the Examples

The sources for the examples are included in JamaicaAMS. To be able to build the examples, for
instance after some changes are made to the source, Maven has to be installed on the system. The
required Maven version is 3.2.0. It is also required to have at least Java 6 and an internet connection.

To build the examples, run:

> mvn clean package

The bundles can then be found in the target directory created by Maven.

11 April 2022 Version 1.0.0 Page 17

JamaicaAMS User Documentation

Page 18 Version 1.0.0 11 April 2022

Chapter 3

Tools and Components

In order to interact with JamaicaAMS, and to profit from its functional extensions, it is our recom-
mendation that users employ tools such as the ones listed in this section. Either provided by third
parties, part of aicas’ portfolio or contained in the JDK, those tools are vital to fully optimize the
development and couple the framework to the Industrial IoT (IIoT) environment.

3.1 Development

• Integrated Development Environment - The IDE of choice to write the bundles is Eclipse.
For a practical “step-by-step” example, please refer to Section 6.

• Emulator - Developing Apps for the JamaicaAMS is done through the creation of bundles. Be-
sides the flexibility it provides, this style of modular programming will extend your possibilities
to create robust and reliable software components, also applying the security mechanisms. A
central tool in this bundle development and debugging process is the JamaicaAMS Emulator
(see Section 3.1.1).

• JVMTI Interface - JamaicaVM implements the Java Virtual Machine Tool Interface to support
introspection and debugging of a local or remote Java Virtual Machine. This interface can also
be used from inside common Java IDEs.

• Code Analyzers - aicas recommends as tools for static source analysis PMD and SpotBugs
(see Section 3.1.2).

• Bndtools - Open source software, that uses bytecode analysis to accurately calculate the de-
pendencies of OSGi bundles. It features a repository model for bundles, that may be referenced
at build-time and can be used to satisfy runtime dependencies. For an introduction to the BND
set of tools, please refer to the Bndtools website [2].

19

JamaicaAMS User Documentation

3.1.1 Emulator

The Emulator facilitates the testing and debugging of bundles greatly. By using the Emulator, devel-
opers can bypass the need to install a written bundle on an external device in order to find errors and
bugs in the code.

In principle, the Emulator is the JamaicaAMS that is compiled for the host system, where it is exe-
cuted in interactive command mode to detect bugs at an early stage of the bundle development. The
Emulator can be launched at the host system the same way as in the target system. It can be optionally
configured through the command-line parameters -c, -s and -b:

> cd <path-to-root-directory-of-JamaicaAMS>/setup

> ./<host>/bin/emulator [-c <config-properties-file>] \
[-s <system-properties-file>] \
[-b <bundle-cache-dir>]

3.1.2 PMD and SpotBugs

These open source tools are two different static source analyzers that are used for the same purpose:
to analyze the code that is produced by a developer.

They detect problematic issues in the code, like missing synchronization, empty catch blocks or
possible null pointer dereferences, classifying major or minor bugs according to potential severity.
Note that code analyzers do not actively change anything in the code.

PMD as well as SpotBugs follow predefined rulesets, that are built in and compared with the code
in a project. These rulesets contemplate aspects like bad practices and rules concerning for instance
performance, security and correctness.

A brief introduction on how to use those tools follows.

SpotBugs

SpotBugs can easily be installed through the Eclipse Marketplace. It already contains several hundred
rules that can also be extended.

After installation, SpotBugs can be configured to fit a specific category, e.g. performance- or bad
practice oriented. Severity levels can be set from 20 (least) to 1 (most) severe, with a further separa-
tion on how a bug should be marked (error, info or warning). Single rules can be enabled or disabled
for a further, more focused, analysis (see Figure 3.1).

This can be configured under Window→ Preferences→ Java→ SpotBugs.

The rulesets in SpotBugs can also be extended under the Plugins and misc. Setting tab. These
extensions are available online.

To use SpotBugs, right click on the preferred project and select SpotBugs→ Find bugs.

For further details on SpotBugs, please refer to its documentation [7].

Page 20 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

Figure 3.1: SpotBugs can be easily configured in Eclipse

PMD

PMD is as user-friendly as SpotBugs. The plugin we recommend can be downloaded from https:
//sourceforge.net/projects/pmd/. It can also be directly downloaded in Eclipse, from
https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/, through Window
→ Install new Software→ add. The tool can be configured in a similar way: Window→ Prefer-
ences→ PMD (see Figure 3.2).

PMD rules are also separated by categories, e.g. “performance”, and severity, e.g. “blocker”. To use
PMD, right click on the preferred project and PMD→ Check code.

For further details on PMD, please refer to the online documentation [6].

11 April 2022 Version 1.0.0 Page 21

https://sourceforge.net/projects/pmd/
https://sourceforge.net/projects/pmd/
https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/

JamaicaAMS User Documentation

Figure 3.2: PMD is configured in a similar manner to SpotBugs

Expected Results

After running either of these tools, a list of bugs will be shown in Eclipse. Each bug can be selected,
to see more detailed information. Both tools also offer an option to export a bug report as a .txt or
.xml file.

In case both tools are deployed on the same project, the results might overlap: However, they will
also be complementary.

Page 22 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

3.2 Deployment

• jarsigner - Signing and verification tool, that uses key and certificate information from a key-
store to generate digital signatures for JAR files (see Section 3.2.1).

3.2.1 jarsigner

JamaicaAMS’s target runtime permits the execution of a bundle JAR file that is signed with a private
key such that the corresponding certificate can be verified by the public key that was put on the target
device (see also 4.1.1). To achieve this, the bundle <bundlename>.jar must be signed using the
following command:

> jarsigner -keystore <keystore> <bundlename>.jar <alias>

This command uses a key pair generated as in the example below:

Creating a Public/Private Key Pair

The keytool that is part of OpenJDK is required to generate a key pair using the following
command line:

> keytool -genkey -keystore <keystore> -alias <alias> -validity
<validity>
Enter keystore password: <password>
Re-enter new password: <password>
What is your first and last name? John Q. Public
What is the name of your organizational unit? SecurityServices
What is the name of your organization? OEM
What is the name of your City or Locality? Karlsruhe
What is the name of your State or Province?
What is the two-letter country code for this unit? DE
Is CN=John Q. Public, OU=Unknown, O=OEM, L=Karlsruhe, ST=Unknown,
C=DE correct? [no]: yes
Enter key password for <<alias>>

(RETURN if same as keystore password): <RETURN>

Here, <keystore>, <alias>, and <validity> can be chosen freely.

It is extremely important that the generated file, <keystore>, remains private. It is recom-
mended to install it only on a machine that is not connected to a network and to limit access to a
minimum number of people. Also, the keystore should be protected by a strong password.

11 April 2022 Version 1.0.0 Page 23

JamaicaAMS User Documentation

3.3 Configuration

• Profiling - Profiler is JamaicaVM’s function to improve the performance of an application.
Profiling means to identify the parts of the code that contribute most to the overall runtime.
These parts are identified in a profile run of the application. For specific information on how
to profile in JamaicaAMS, please see Section 3.3.1.

• Bundle Configuration - The configuration of multiple bundles is made easier through the
implementation of the OSGi Configuration Admin service and the Configurator (see Sec-
tion 3.3.2).

3.3.1 Profiling and JamaicaAMS

JamaicaAMS is offered with an additional profiling binary, called the jamsp file, that could be
chosen by the user to start the framework. This profiling binary is a particular version of JamaicaAMS
that allows the user to collect information related to the runtime execution.

JamaicaAMS profiling binary

The JamaicaAMS profiling binary collects information on the amount of runtime spent for the exe-
cution of different methods. This information is dumped to a file (in /tmp/jamaica-ams.prof)
after a test run of the application has been performed. This collection of profile information is cumu-
lative; that is, when this file exists, profiling information is appended.

The XPROF Environment Variable

Another way to optimize performance is to start JamaicaAMS with the Environment Variable JA-
MAICA_AMS_XPROF enabled. This variable enables collecting simple profiling information us-
ing periodic sampling. For detailed information on this subject, please refer to the JamaicaVM User
Manual[3] (cf. Section 12.1.2, option -Xprof).
To execute JamaicaAMS with the periodic sampling enabled, an Environment Variable needs to be
set before JamaicaAMS starts. To export the Environment Variable do as follows:

> export JAMAICA_AMS_XPROF=<value from 0 to 1000>

Example:

> export JAMAICA_AMS_XPROF=100

The value to specify is the number of profiling samples to be taken per second, e.g. in the example
showed here, 100 samples per second.

This profile is used to provide an estimate of the methods which use the most CPU time during
the execution of an application. During each sample, the currently executing method is determined

Page 24 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

and its sample count is incremented, independent of whether the method is currently executing or is
blocked waiting for some other event.

The total number of samples found for each method are printed when the application terminates.

3.3.2 Bundle Configuration

Bundles may load configuration data from the jar, from a local file or from a remote location; and
they often require additional configuration, depending on the deployment environment. Furthermore,
when multiple bundles require, each of them, particular configuration files, the result is increased
complexity: duplicated files and exception handling code, incoherent file locations and different
fetching procedures.

As a solution, OSGi offers specification for the Configuration Admin service and the Con-
figurator bundle. JamaicaAMS packs the Apache Felix implementation of these bundles in
setup/bundle.1 of its distribution tree. This section explains how to use these bundles to access,
parse and store configurations in a uniform way.

Note that...

the Apache Felix Configuration Admin and Configurator bundle implement chapters 104 (https://
osgi.org/specification/osgi.cmpn/7.0.0/service.cm.html) and 150 (https://osgi.
org/specification/osgi.cmpn/7.0.0/service.configurator.html) of the OSGi compendium
specification, being this document the absolute reference.

3.3.2.1 Configurator

Instead of loading the needed configuration data from scattered files, the bundles load the information
from the Configuration Admin service. This service acts as a database, simply storing and providing
the configurations which are delivered by the Configurator. The role of the Configurator is therefore
to fetch and parse configuration files, and then to add the information to the Configuration Admin
service.

The Configurator can load files from the local file system, from the bundle jar or from a
remote location, supporting the HTTP and FTP protocols. It requires a URL to the file
that it should get, and this must contain the protocol to be used (e.g., file:.conf/config1.json,
http://www.yourserver.com/standardConfig.json).

Note that...

a list of the URLs for the files to be loaded must be present in the configurator.initial property, which can be modified
in the conf/config.properties file.

Configuration File Format

A configuration file may contain multiple configurations, which are identified using a persistent iden-
tifier (PID). PIDs are used by the bundles to request a certain configuration from the configuration
admin service. Those PIDs that start with the “:configurator:” prefix contain information or instruc-
tions that are relevant to the Configurator.

11 April 2022 Version 1.0.0 Page 25

https://osgi.org/specification/osgi.cmpn/7.0.0/service.cm.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.cm.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html

JamaicaAMS User Documentation

An example of PID and configuration can be seen in the listing below:

{
// Resource Format Version
":configurator:resource-version": 1,

// First Configuration
"pid.a":

{
"key": "val",
"some_number": 123

},

// Second Configuration
"pid.b":

{
"a_boolean": true

}
}

Configuration files must be written in the JSON format. When those files are not loaded from the
bundle jar, it is mandatory to provide a symbolic-name and a version for the configuration (for an
example, see table 150.1 in section 150.3.1 in https://osgi.org/specification/osgi.
cmpn/7.0.0/service.configurator.html).

3.3.2.2 Configuration Admin Service

As already mentioned, the Configuration Admin acts as a database for bundle configurations, storing
them persistently (in the JamaicaAMS cache) and distributing them to concerned bundles whenever
they are updated. The configurations are handled as java.lang.Dictionary objects and stored in the
.properties format.

Retrieving Configurations

There are two ways of interacting with the Configuration Admin: Either synchronously, by fetching
the current available configuration through the ConfigurationAdmin interface, or asynchronously, by
registering a ManagedService that gets notified whenever its corresponding configuration is updated.

Both methods of accessing the bundle configuration are described in the specification, as they are
part of the Configuration Admin service, and are not subject to changes in the different implemen-
tations. Thus a bundle that uses the code discussed in the following subsections will work with any
implementation of the Configuration Admin.

Synchronous Access

Assuming that an implementation of the Configuration Admin service is installed and a correspond-
ing configuration dictionary is available, a bundle can retrieve and update this configuration using the

Page 26 Version 1.0.0 11 April 2022

https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.configurator.html

JamaicaAMS User Documentation

code presented in te following listing. If no configuration exists, the same code will result in a new
configuration.

// retrieve the service interface
ServiceReference<ConfigurationAdmin>serviceReference=
context.getServiceReference(ConfigurationAdmin.class);
ConfigurationAdmin configurationAdmin=null;
if (serviceReference!=null)

{
configurationAdmin=(ConfigurationAdmin)
context.getService(serviceReference);

// fetch the current configuration
Configuration configuration=
configurationAdmin.getConfiguration("ConfigUserTest");
Dictionary props=configuration.getProperties();
// if null,the configuration is new
if (props==null)

{
props=newHashtable();

}
// set some properties
props.put (..., ...);
// update the configuration
config.update (props);

}

Asynchronous Access

A different approach is that bundles can be reconfigured by a configuration provider while run-
ning, thus achieving highly configurable applications. A configuration listener must implement the
ManagedService interface, which provides the notification method updated(Dictionary). The listener
is then to be published as a service, in association with the configuration name it wants to be updated
with.

This approach is also associated with a greater adoption effort, since it imposes a substantial change
to the design of the involved bundles. The possibility of updating a bundle with new configurations
imposes new logical states on the bundle (which could be called “unconfigured”, “configured” and
“running”), while it is in the “active” state. Furthermore, the configuration update occurs in a thread
that belongs to the Configuration Admin (thus the name “asynchronous approach”), which may re-
quire further handling depending on the code to be executed. For example, if no configuration is
present initially, the bundle start method must register a ManagedService and use the update thread
to actually initiate the bundle.

The following listing exemplifies a configuration listener published as an OSGi service, which will
get notified whenever the associated configuration is changed.

private ServiceRegistration configListenerRegistration;

public void start(BundleContext context)
{

11 April 2022 Version 1.0.0 Page 27

JamaicaAMS User Documentation

Dictionary props=new Hashtable();
props.put("service.pid","configurationNameOrPersistanceID");
configListenerRegistration=
context.registerService(ManagedService.class.getName(),
new ConfigurationListener(),props);

}

public void stop(BundleContext context)
{
if (configListenerRegistration!=null)

{
configListenerRegistration.unregister();
configListenerRegistration=null;

}
}

Persistence Managers

In cases where the storage logic needs to be overwritten completely (e.g., when the configuration
needs to be stored remotely or through a database manager), a persistence manager can be used.

The persistence manager created by the user must provide basic functionality (load-
ing, storing and deleting dictionaries) and must be published as an OSGi ser-
vice. It needs to implement the interface PersistenceManager present in the package
com.aicas.jamaica.ams.org.apache.felix.cm, which can be found in the file <path to

JamaicaAMS>/setup/bundle.1/configuration-admin-<version>.jar .

The Configuration Admin can be configured to use a certain persistence manager by providing its
name in the felix.cm.pm property.

Note that...

the persistence manager mechanism is specific to the Apache Felix implementation, not being part of the OSGi spec-
ification of the Configuration Admin service. The PersistenceManager interface present in the JamaicaAMS distri-
bution is the same one created by Apache Felix and documented in http://felix.apache.org/apidocs/
configadmin/1.6.0/org/apache/felix/cm/PersistenceManager.html.

The developer must however consider the different package name, which is, as mentioned above:

com.aicas.jamaica.ams.org.apache.felix.cm.

Page 28 Version 1.0.0 11 April 2022

http://felix.apache.org/apidocs/configadmin/1.6.0/org/apache/felix/cm/PersistenceManager.html
http://felix.apache.org/apidocs/configadmin/1.6.0/org/apache/felix/cm/PersistenceManager.html

Chapter 4

Security

The OSGi Security Layer is based on the Java security architecture. It provides the infrastructure to
deploy and manage applications that must run in controlled and resource constrained environments.

For JamaicaAMS, the primary requirement for security is to ensure that only code that has been
approved can run on the framework; and that code can only use those facilities which are approved.
This means that JamaicaAMS must know how to determine whether the source which distributes the
code is an approved one, and what facilities that code may use. JamaicaAMS uses X.509 certificates
and the Java security manager provides a sound security mechanism.

As part of its security mechanisms, JamaicaAMS enables the system owner to determine who may
write applications (bundles) for its application management system and to provide fine-grained re-
strictions on what each application may access in the system. Each application provider is identified
via one or more certificates with associated permissions.

4.1 Terms and Definitions

The following are some common terms that are useful to describe the JamaicaAMS security model.

4.1.1 Public/Private Key Pair

Public key cryptography is the base for Digital Signing. It matches a pair of mathematically related
keys used by an asymmetric key algorithm: a public (PuK) and a private (PrK) key. The Public Key
may be distributed freely, while the corresponding Private Key should only be known to the user.
Messages signed with the private key can only be verified correctly with the public key. In the “Java
World” keys are often stored in KeyStores (*.jks files).

Messages signed with the private key can only be verified correctly with the public key. This can be
used to authenticate the signer of a message (assuming the public key is trusted).

29

JamaicaAMS User Documentation

Figure 4.1: A Public/Private Key Pair

4.1.2 Certificates and Chains

The JamaicaAMS framework uses a common standard for certificates: X.509. The information
commonly stored in a X.509 certificate is shown in Figure 4.2.

Figure 4.2: X.509 Certificate

Certificates can be arranged in a chain, forming a so called Chain of Trust. For this the following
conditions must be met:

• The issuer of each certificate (except the last one, the Root of Trust) matches the subject of the
superordinate certificate.

• Each certificate (except the last one) is signed by the Private Key of the superordinate certifi-
cate. Hence, its signature can be verified using the Public Key of the superordinate certificate.

An example of Chain of Trust is depicted in Figure 4.3.

Note that...

Even though called “chain” according to the view from the bottommost certificate towards the root, certificate chains
can span a tree with multiple instances at any level (except the root). This way, in case a certificate issued at a parent
level becomes compromised, all its children can be tracked with their certificates revoked. This breaks the chain
back to the root and makes the signer invalid.

Page 30 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

Figure 4.3: A Certificate Chain

4.2 Signed JAR File

A fundamental way for an OSGi framework to authenticate code is to have the Java code signed: this
makes it possible to put JAR files as leaves (final instances) into a Chain of Trust. Depending on the
implementation, specific services that manage the permissions associated to the authenticated code
are defined. Figure 4.4 shows the security-related content of a JAR file.

Figure 4.4: A Signed JAR file

However, before a JAR is signed, the creation of a public/private key pair and the corresponding
certificate is needed. Furthermore, it must be ensured that the public key that verifies the certificate
is present on the target device. The involved certificate must be included in the trust store specified
in Section 4.4

For more information on the process of signing a JAR file, please refer to Section 3.2.1.

11 April 2022 Version 1.0.0 Page 31

JamaicaAMS User Documentation

Note: In its Core document for the Release 8, the OSGi Alliance informs:

JAR Structure and Manifest

OSGi JARs must be signed by one or more signers that sign all resources except the ones in the
META-INF directory; the default behavior of the jarsigner tool. This is a restriction with respect
to standard Java JAR signing; there is no partial signing for an OSGi JAR.

The OSGi specification only supports fully signed bundles. The reason for this restriction is be-
cause partially signing can break the protection of private packages. It also simplifies the security
API because all code of a bundle is using the same protection domain.

Signature files in nested JAR files (For example JARs on the Bundle-ClassPath) must be ignored.
These nested JAR files must share the same protection domain as their containing bundle. They
must be treated as if their resources were stored directly in the outer JAR.

Each signature is based on two resources. The first file is the signature instruction file; this file
must have a file name with an extension .SF. A signature file has the same syntax as the manifest,
except that it starts with Signature-Version: 1.0 instead of Manifest-Version: 1.0.

The only relevant part of the signature resource is the digest of the Manifest resource. The name of
the header must be the name algorithm (e.g. SHA1), followed by -Digest-Manifest. For example:

Signature-Version: 1.0

SHA1-Digest-Manifest: RJpDp+igoJ1kxs8CSFeDtMbMq78=

MD5-Digest-Manifest: IIsI6HranRNHMY27SK8M5qMunR4=

The signature resource can contain name sections as well. However, these name sections should
be ignored.

If there are multiple signers, then their signature instruction resources can be identical if they use
the same digest algorithms. However, each signer must still have its own signature instruction file.
That is, it is not allowed to share the signature resource between signers.

Source: https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf.

Page 32 Version 1.0.0 11 April 2022

https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf

JamaicaAMS User Documentation

4.3 Authentication and Permissions

In order to ensure that a tampered bundle will be detected by JamaicaAMS’s security mechanism,
before a bundle can be distributed for use on the target device, it needs to be signed by the platform
provider or a trusted entity using a public/private key signature. All files in the JAR need to be
included in the signatures, including resources and not only class files.

On the target device, JamaicaAMS verifies the signature against a public key that is pre-installed on
the device. Permissions of all accesses to resources must be checked and resource budgets must be
enforced during execution.

Permissions

The OSGi Framework uses Java 2 permissions for securing bundles. Each bundle is associated
with a set of permissions. During runtime, the permissions are queried when a permission is requested
through the Security Manager which is a software component in charge of permission validation for
the bundles.

The management of the bundle’s permissions is handled through “Conditional Permission Admin”,
“Permission Admin”, or another security agent. The Apache Felix implementation includes “Per-
missionAdmin” and “ConditionalPermissionAdmin”, provided by a “framework.security” extension
bundle. JamaicaAMS incorporates the “org.apache.felix.framework.security” as “bundle.1” into the
framework.

4.4 Activating Security in JamaicaAMS

JamaicaAMS contains implementations of the OSGi security layer and a policy file reader in the
form of auto-deploy bundles. In order to activate security, create a system configuration file with the
following content:

org.osgi.framework.security=osgi
java.security.policy=<path to a policy file>
jamaica-ams.security.policy=<path to an OSGi policy file>
org.osgi.framework.trust.repositories=<path to a trust store>

It is the policy file (all.policy) that defines the general permissions; it should contain:

grant {
permission java.security.AllPermission;

};

A policy that provides no permissions at all would be empty, as seen below.

grant
{
};

11 April 2022 Version 1.0.0 Page 33

JamaicaAMS User Documentation

More specifically, the OSGi policy file (osgi.all.policy) defines the permissions for the bun-
dles. The simple example below shows how any bundle could be granted permission to call all
restricted APIs.

ALLOW {
(java.security.AllPermission "*" "*")

} "Give AllPermission to all Bundles"

Finally, the trust store which is specified by the property org.osgi.framework.trust.repositories
should contain the trust anchors to be used by the framework. Only OSGi bundles signed with a
private key and whose certificate has a Chain of Trust to one of these trust anchors are considered
as properly signed bundles. Then the policy file can be used to specify that only the properly signed
bundles can be installed and started.

4.5 An Example of Security Configuration

In this section an example will be used to summarize the information provided in the previous sec-
tions. The instructions are performed on a Linux machine and the following files are involved:

• primes-<version>.jar: The example bundle.

• TestKey.jks: A keystore for signing bundles (alias: test1, password: password)

• conf/osgi.policy: An OSGi policy file that restricts which bundles may be installed.

• conf/system.properties: System properties to enforce that osgi.policy is used.

• conf/trust.jks: A truststore containing the certificate of the example bundle signer.

The process of creating the keystore file TestKey.jks and the truststore file conf/trust.jks
is divided in three steps.

1. Create the keystore for signing bundles using keytool. In the root directory of the Ja-
maicaAMS distribution, type the following command to create TestKey.jks. For more
information about keytool refer to Section 3.2.1.

> keytool -genkey -keyalg RSA
-alias test1 -keystore TestKey.jks
-storepass password -keypass password
-validity 365 -keysize 2048
-dname "cn=Demo, ou=JamaicaAMS, o=aicas GmbH, l=Karlsruhe,
c=DE"

2. Export the certificate of the keystore created in the previous step. In this case, a certificate file
host.crt is to be created with the following command. Note that the command requires the
password that has been set for the keystore.

Page 34 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

> keytool -export -alias test1 -keystore TestKey.jks
-file host.crt

3. Import the certificate to the truststore file conf/trust.jks. The file will be generated in
the folder conf if it does not exist.

> keytool -import -v -trustcacerts
-alias test1 -file host.crt
-keystore conf/trust.jks

Set a password for the truststore after the following request:

Enter keystore password:
Re-enter new password:

Type “yes” in the terminal, when asked whether the imported certificate can be trusted:

Trust this certificate? [no]: yes
Certificate was added to keystore
[Storing conf/trust.jks]

4.5.1 Sign the Example Bundle

It is important to notice that the bundle is provided unsigned. In order to sign the bundle, do as
follows:

1. Open a terminal and go to the JamaicaAMS root directory, where the file TestKey.jks is.

2. Enter in the terminal:

> jarsigner -keystore TestKey.jks example/primes-<version>.jar
test1

3. Enter the password for the keystore (PW = password). Now the JAR file is signed.

4.5.2 Configure the System Properties

Adapt the system.properties to select the policy file and the trust repositories. In particular,
the property org.osgi.framework.security shall be set to osgi to enable the security. The
property jamaica-ams.security.policy shall point to the security policy file which is in this
case the osgi.policy file. The property org.osgi.framework.trust.repositories
shall point to the truststore trust.jks.

11 April 2022 Version 1.0.0 Page 35

JamaicaAMS User Documentation

The policy where the policy rules are defined
jamaica-ams.security.policy=./conf/osgi.policy

Trust anchors for signature checks
org.osgi.framework.trust.repositories=./conf/trust.jks

Enable security
org.osgi.framework.security=osgi

4.5.3 Configure the Policy

The osgi.policy should contain the following rules. The signer information needs to be matching
the information that is present in the truststore. This is the certificate matching the key that was used
for signing the bundle.

ALLOW {
(org.osgi.framework.AdminPermission
"(signer=CN=Demo, OU=JamaicaAMS, O=aicas GmbH, L=Karlsruhe, C=DE;-)"
"lifecycle")

} "Allow installation of properly signed Bundles"
DENY {

(org.osgi.framework.AdminPermission "*" "lifecycle")
} "Deny installation of all other Bundles"
ALLOW {

(java.security.AllPermission "*" "*")
} "Give AllPermission to all Bundles"

4.5.4 Set-Up and Operation

1. As a next step, the signed bundle will be installed and demonstrated. The emulator is used
for the purpose of this demonstration. To do so:

• Open a terminal, go to the setup directory of the JamaicaAMS distribution and start Ja-
maicaAMS by entering “./<host>/bin/emulator”

• Enter “install ../example/primes-<version>.jar”

• Enter “start” ID and “stop” ID to run and stop the bundle

2. After running the signed versions of the bundle “primes”, try to install the unsigned bundle
example/primes-with-budget-<version>.jar to get the security check and the
“Access denied” message displayed.

3. To see the IDs, you can enter “lb” (for “list bundles”)

Page 36 Version 1.0.0 11 April 2022

Chapter 5

OSGi Framework and Bundles

5.1 Framework Layers

OSGi offers a software layer, running on top of a Java platform, that supports the design and im-
plementation of modular systems. It does that by specifying a secure infrastructure that enables the
distribution, interoperability and remote management of application- and service components, called
bundles and sometimes also referred as packages.

The central part of the specification is the framework, that defines a model to manage the lifecycle
of the bundles, also including a registry, that exposes functionalities made available as services to be
imported and exported by the bundles, and an execution environment.

Figure 5.1: OSGi Framework: Layers Overview

Source: https://www.osgi.org/developer/architecture/layering-osgi/

37

https://www.osgi.org/developer/architecture/layering-osgi/

JamaicaAMS User Documentation

5.2 Bundle Lifecycle

The Lifecycle Layer provides an API for controlling the different phases of the bundle operations.

Figure 5.2: Bundle’s lifecycle

Figure 5.2 shows the states that a bundle can experience in a lifecycle, as well as the possible transi-
tions it could make to other states. Those can be summarized as follows:

• Installed: The bundle was successfully installed.

• Resolved: This state evaluates if the bundle is ready (complete), by checking things like the
Java version, if the imported packages are available etc.

• Starting: This is a transition state in the lifecycle; in this state, the method that activates and
starts the bundle is called.

• Active: In this state, the bundle has been successfully validated and is running.

• Stopping: Another transition state; the method that stops the bundle is being executed and the
bundle is being stopped.

• Uninstalled: The bundle is uninstalled and cannot be induced into another state.

5.3 Service Orientation

The service layer of the Framework rules the way the bundles dynamically connect and collaborate,
through a process known as “publish-find-bind”.

The concept of service in the framework’s context involves the following aspects:

Page 38 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

• Specification: An interface that specifies the public methods.

• Implementation: A Java class that implements the methods specified in the interface.

• Registry: Where the services are included and made available to other bundles.

• Customers: The bundles that make use of a given service.

5.4 Controlling the Bundles

The control of the bundles’ lifecycle as well as other functionalities can be done through administra-
tion consoles or via command line, depending on the implementation. This way, any bundle can be
dynamically installed or uninstalled without the application having to be stopped or restarted. Also
information about active services, the listing of imports and exports of each bundle and the metadata
contained in the headers are shown this way.

As mentioned in Section 2.3.3, JamaicaAMS provides the Apache Felix Gogo shell as an auto-deploy
bundle. The command “lb” lists the bundles and their present states, as seen below.

g! lb
START LEVEL 3

ID|State |Level|Name
0|Active | 0|System Bundle (0.0.0)|0.0.0
1|Active | 1|JamaicaAMS Configuration Admin (0.1.0.SNAPSHOT)|0.1.0.SNAPSHOT
2|Active | 1|Apache Felix Configuration Json (1.0.6)|1.0.6
3|Active | 1|Apache Felix Configurator Service (1.0.14)|1.0.14
4|Active | 1|Apache Felix Converter (1.0.18)|1.0.18
5|Active | 1|Apache Felix Log Service (1.2.4)|1.2.4
6|Active | 1|Apache Sling Commons Johnzon Wrapper Library (1.2.6)|1.2.6
7|Active | 1|org.osgi:org.osgi.util.function (1.1.0.201802012106)|1.1.0.201802012106
8|Active | 1|JamaicaAMS OSGi Log Writer (0.1.0.SNAPSHOT)|0.1.0.SNAPSHOT
9|Resolved | 3|JamaicaAMS Security Provider (0.1.0.SNAPSHOT)|0.1.0.SNAPSHOT
10|Active | 2|JamaicaAMS Policy File Reader (0.1.0.SNAPSHOT)|0.1.0.SNAPSHOT
11|Active | 3|Apache Felix Gogo Command (1.1.2)|1.1.2
12|Active | 3|Apache Felix Gogo Runtime (1.1.4)|1.1.4
13|Active | 3|Apache Felix Gogo Shell (1.1.4)|1.1.4

g!

11 April 2022 Version 1.0.0 Page 39

JamaicaAMS User Documentation

Page 40 Version 1.0.0 11 April 2022

Chapter 6

How to write a Bundle with Eclipse

This section describes how to write an OSGi bundle for JamaicaAMS with the Eclipse IDE.

6.1 Prerequisites

The steps described in this section assume the following knowledge:

• General experience with a Java Runtime Environment

• General experience in writing applications in the Java programming language

• Basic understanding of the OSGi framework, especially of the bundle’s interface and lifecycle

• General experience with the Eclipse IDE [9]

The steps described in this section require the following setup to be present:

• An up-to-date version of the Eclipse IDE from [8]. The required minimum version is 3.6, but
the latest version is recommended.

• The installed Plug-In Development Environment (PDE) [10]. If the PDE plug-in is not con-
tained in your Eclipse distribution, it can be obtained using the Eclipse Update manager, by
choosing Menu→ Help→ Install New Software

6.2 Bundle Tutorial

6.2.1 Create a new Plug-In Project

1. Create a new Plug-in project by navigating to File → New → Project. In the New Project
wizard choose Plug-In Development→ Plug-in Project

41

JamaicaAMS User Documentation

2. In the New Plug-in Project wizard on the Plug-in Project page enter HelloWorld into the
Project Name textfield.

Leave the Project Settings options unchanged.

Set the Target Platform options to match “This plug-in is targeted to run with: an OSGi
framework: standard”.

Proceed by clicking the [Next >] button.

3. On the Content page leave the Properties options unchanged. Make sure that in the Op-
tions section, the Generate an activator, a Java class that controls the plug-in’s life cycle
checkbox is checked.

Proceed by clicking the [Next >] button.

4. On the Templates page you can see a selection of project templates.

Choose Hello OSGi Bundle for now.

Confirm by clicking the [Next >] button.

5. The template Basic OSGi Bundle will let you choose a message to be displayed on start and
one on stop respectively. Freely choose any or keep with the defaults.

6. End this procedure by clicking the [Finish] button. At this point, Eclipse may suggest switch-
ing to the Plug-in Development Perspective because this is the default for Plug-in Projects.
Please do so.

6.2.2 Make Yourself Familiar with the UI

Verify that you have successfully finished the first stage by finding the HelloWorld project with
src and a Manifest as META-INF/MANIFEST.MF in the Workbench’s Packages / Package Ex-
plorer View.

If you never have used the Plug-in Development Perspective before, it might be a good moment
to make yourself familiar with it by, e.g., having a look how META-INF/MANIFEST.MF is repre-
sented.

6.2.3 Implement the Functionality

There is literally nothing that needs to be done. See how src/helloworld/Activator.java
implements BundleActivator with the input you chose in the wizard.

6.2.4 Run the Bundle on the Integrated Framework

As a next step you might want to run the newly created bundle. You can run it in the Equinox OSGi
framework, which is a fundamental part of every Eclipse installation.

Page 42 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

1. Select the HelloWorld project that contains your OSGi bundle.

2. Choose Run→ Run Configurations.... This opens the Run Configurations dialog.

3. Create a new OSGi Framework configuration.

4. On the Bundles tab, please ensure that Equinox is set as runtime framework and select the
following bundles:

For Eclipse 3.6 and 3.7 users:

• HelloWorld
• org.eclipse.osgi

For Eclipse 4.x users:

• HelloWorld
• org.eclipse.osgi
• org.eclipse.equinox.console
• org.apache.felix.gogo.command
• org.apache.felix.gogo.runtime
• org.apache.felix.gogo.shell

5. On the Settings tab, enable the Clear the configuration area before launching checkbox.

6. Now click the [Apply] button to save the configuration and then press Run to launch an
Equinox instance with the selected bundles. The Console View will show you the expected
output of the Activator class and the OSGi shell.

Since you have started a regular OSGi framework, you can start and stop your bundle by using the
commands start <bundle-id> and stop <bundle-id>. Use the help command to get a
list of the most important OSGi commands.

6.2.5 Deployment

As a next step you might want to deploy your bundle to a target system. To obtain a Java Archive
(JAR) file for your bundle, in order to install it into any standard OSGi framework, take the follow-
ing steps:

1. Select the HelloWorld project in the Package Explorer View.

2. Go to File→ Export. . . .

3. In the Export wizard, on the Select page choose Plug-in Development→ Deployable plug-
ins and fragments.

11 April 2022 Version 1.0.0 Page 43

JamaicaAMS User Documentation

4. Proceed by clicking the [Next >] button

5. On the Deployable plug-ins and fragments page, in the Destination tab select the Directory
option and determine the place where to put the bundle JAR by editing the textfield.

Shortcut Hint:

• By choosing the Bundle Directory of an OSGi framework here, the framework will use the bundle on
next start.

• If the framework has a file install mechanism activated, you can use this option or the Install into host
option to install the bundle on-the-fly.

6. Click the [Finish] button to create the bundle JAR file.

Page 44 Version 1.0.0 11 April 2022

Chapter 7

Debugging Bundles with Eclipse

This section describes how to debug an OSGi bundle with the Eclipse IDE. Besides the traditional
debug facilities in Eclipse for debugging on the local host machine, here the focus is especially set
on remote debugging. The latter is particularly required when a bundle is executed and debugged
directly on a target platform running JamaicaAMS.

7.1 Prerequisites

The steps described in this section assume the following knowledge:

• General experience with a Java Runtime Environment

• General experience in debugging applications in the Java Programming Language

• Basic understanding of the OSGi framework, especially the Bundle interface and lifecycle

• General experience with the Eclipse IDE, especially how to debug applications using Eclipse
IDE

The steps described in this document require the following setup:

• The minimum required Eclipse IDE is version 3.6, but the latest version is recommended.

• Java Virtual Machine (JVM) V5.0 or later must be used, such as JamaicaVM or OpenJDK 8.

• A JamaicaAMS release

7.2 Background

Debugging an OSGi bundle can be accomplished in several different ways for different scenarios,
e.g.:

45

JamaicaAMS User Documentation

• a bundle is deployed and debugged locally in the OSGi environment hosted by the Eclipse IDE;

• a bundle is running in a custom target OSGi environment apart from Eclipse (e.g. Ja-
maicaAMS) and is debugged remotely;

• the target OSGi framework may run on the local or on a remote host

However, in either case the Eclipse IDE serves as an interface for debugging, which may connect to
an integrated or a separate OSGi platform. In the case of JamaicaAMS, the Debuggee, i.e. the bundle
to be debugged, is always executed within a dedicated JamaicaAMS framework running on a local or
a remote host. In both cases, Eclipse IDE connects remotely to the target JamaicaAMS framework.

In order to facilitate debugging activities, the JamaicaAMS distribution provides two binary applica-
tions that have been built by Jamaica Builder with JVMTI agent enabled (JVMTI 1). These applica-
tions are located in:

• <JamaicaAMS>/setup/<target>/bin/jamsdi

• <JamaicaAMS>/setup/<host>/bin/emulatordi

Both jamsdi and emulatordi are JamaicaAMS components that are compiled for the target
system and host system, respectively.

The following example shows how to remotely debug a JamaicaAMS built-in bun-
dle (<JamaicaAMS>/example/primes-<version>.jar, the debuggee) using the
emulatordi and Eclipse IDE.

7.3 Setup of the Debugging Environment

To debug the “primes” bundle, setup the following environments:

• Create a Plug-in Project from the extracted Bundle JAR that is located at <path to
JamaicaAMS>/example/primes-<version>-sources.jar and set a breakpoint
(e.g., somewhere in the PrimesActivator.start() method). Figure 7.1 shows an ex-
ample of a breakpoint that stops the execution before checking whether a number is prime or
not.

• Copy the <path to JamaicaAMS>/example/primes-<version>.jar into the
folder <path to JamaicaAMS>/setup/bundle.3, in order to auto start the bundle.
You can also manually export the “primes” project as a bundle and install the bundle when
JamaicaAMS runs.

1https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

Page 46 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

Figure 7.1: Setup the Java project for Computing Prime numbers

7.3.1 Run the Debug Server

Supposing the bundle “primes” is in the folder <JamaicaAMS>/setup/bundle.3, type the
following command to start the emulatordi and you will see the message below it.

> ./<host>/bin/emulatordi

Listening for transport dt_socket at address: 4000

This shows that the debug server (emulatordi) listens for a socket connection on the pre-defined
port 4000 and will be suspended until the debugger connects.

7.3.2 Run the Debug Client

In Eclipse, right click the Class PrimesFinder.java that contains a breakpoint and then select
the Debug as option, followed by the Debug Configurations... option. In the [Debug Configura-
tions] dialog on the Connect tab, choose the following options (depicted in Figure 7.2).

• ConnectionType: Standard (Socket Attach)

• Host: localhost

• Port: 4000

• Allow termination of remote VM

Click the [Debug] button and you can debug the “primes” bundle as usual.

Running the debug server jamsdi is similar to using emulatordi, except for changing the Host
option on the Connect tab of the [Debug Configurations] dialog to the IP address of the target
system that runs the bundle.

11 April 2022 Version 1.0.0 Page 47

JamaicaAMS User Documentation

Figure 7.2: Debug Configurations for debugging with emulatordi

Page 48 Version 1.0.0 11 April 2022

Chapter 8

JamaicaAMS Runtime Reference

8.1 JamaicaAMS Properties

In the JamaicaAMS setup/conf directory there are three configuration files:
config.properties, system.properties and logging.properties. The
config.properties is typically used to configure the behavior of the framework and the
bundles; the system.properties is purely a convenience, to avoid having to set complicated
system properties via command line. JamaicaAMS only directly loads the configuration properties.

When JamaicaAMS starts, its launcher is activated and configures the system by passing the prop-
erties loaded from system.properties to the framework. Though it is allowed to specify du-
plicated properties in both configuration files, the configuration properties will override the system
properties for duplicated cases.

Note that...

A complete description of the OSGi launching properties implemented by JamaicaAMS can be found in section
4.2.2 of the OSGi Core Release 8 specification [5].

8.1.1 Config Properties

This section presents the properties listed in the config.properties file.

• org.osgi.framework.system.packages
To override the packages the framework exports by default from the classpath, this variable
must be set.

• org.osgi.framework.system.packages.extra
To append packages to the default set of exported system packages, this value must be set.

• org.osgi.framework.bootdelegation
This property makes specified packages from the classpath available to all bundles and should
be avoided. However, if such a configuration is to be made, an example of values listed could
be sun.*,com.sun.*,jdk.*.

49

JamaicaAMS User Documentation

• jamaica-ams.bootdelegation.implicit
According to the boolean value of this property, JamaicaAMS tries to infer when to implicitly
boot delegate to ease integration with external code. This feature is set to true by default.

• org.osgi.framework.storage
This property specifies the location of the bundle cache, which defaults to
jamaica-ams-cache in the current working directory $user.dir. If this value is
not absolute, then the jamaica-ams.cache.rootdir will control how the absolute
location is calculated as in

org.osgi.framework.storage=jamaica-ams.cache.rootdir/jamaica-ams-cache.

• jamaica-ams.cache.rootdir
This property is used to convert a relative bundle cache location into an absolute one, by spec-
ifying the root to prepend to the relative cache path. The default for this property is the current
working directory $user.dir.

• org.osgi.framework.storage.clean
This property controls whether the bundle cache is flushed the first time the framework is
initialized. Possible values are “none” and “onFirstInit”. The default value is “none”.

• jamaica-ams.cache.locking
This boolean property is used to enable/disable bundle cache locking. On JVMs that do not
support file channel locking, you may want to disable this feature. The default is enabled.

• jamaica-ams.cache.filelimit
The integer value of this property limits how many open files the bundle cache is allowed to
use. The default value is 0, which is unlimited.

• jamaica-ams.auto.deploy.action.1=install,start

• jamaica-ams.auto.deploy.action.2=install,start

• jamaica-ams.auto.deploy.action.3=install,start
The properties above determine which actions are performed when processing the auto-deploy
directory. It is a comma-delimited list of the values “install”, “start”, “update”, and “uninstall”.

An undefined or blank value is equivalent to disabling auto-deploy processing. The numerical
ending component is the targeted start level. Any number of these properties may be specified
for different start levels.

• jamaica-ams.auto.deploy.dir.3
This property specifies the directory to use as the bundle auto-deploy directory; the default is
bundle.n in the working directory. The numerical ending component is the target start level.
Any number of such properties may be specified for different start levels.

Page 50 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

• jamaica-ams.auto.install.3

This property is a space-delimited list of bundle URLs to install when the framework starts.
The numerical ending component is the target start level. Any number of such properties may
be specified for different start levels.

• jamaica-ams.auto.start.3

This property is a space-delimited list of bundle URLs to install and start when the framework
starts. The ending numerical component is the target start level. Any number of such properties
may be specified for different start levels.

• jamaica-ams.log.uncaught.exceptions.bundle.threads

This property suppresses logging of uncaught exceptions in threads belonging to bundles. The
default is false.

• org.osgi.framework.startlevel.beginning=3

This property sets the initial start level of the framework upon startup.

• jamaica-ams.startlevel.bundle=3

This property sets the start level of newly installed bundles.

• jamaica-ams.service.urlhandlers

JamaicaAMS installs a stream and content handler factories by default. The value of this
property should be actively set to false, in order not to install them.

• jamaica-ams.shutdown.hook

By default, JamaicaAMS’s launcher registers a shutdown hook to cleanly stop the framework.
The value of this property should be actively set to false, in order to disable this hook.

8.1.2 System Properties

The following are built-in system properties of the JamaicaAMS, listed in <path to
JamaicaAMS>/setup/conf/system.properties.

• java.security.policy=./conf/all.policy

This property sets the path to the Java security policy files and should be adapted as needed.

• jamaica-ams.security.policy=./conf/osgi.all.policy

This property sets the path to the JamaicaAMS security policy files and should be adapted as
needed.

• org.osgi.framework.security=osgi

This property enables security.

11 April 2022 Version 1.0.0 Page 51

JamaicaAMS User Documentation

• org.apache.felix.log.maxSize=100

This property sets the maximum size of entries in the log history. A value of -1 means the log
has no maximum size; a value of 0 means that no historical information is maintained.

• org.apache.felix.log.storeDebug=false

This property determines whether or not debug messages will be stored in the history.

• jamaica-ams.log.level

This property is used to set the log levels. The JamaicaAMS logging levels match those speci-
fied in the OSGi Log Service (i.e., 1 = error, 2 = warning, 3 = information, and 4 = debug).

8.1.3 Logger Properties
Note that...

The Log Services specification defines the methods and semantics of interfaces which bundle developers can use to
log entries and to retrieve log entries. Bundles can use the Log Service to log information for the Operator. Other
bundles, oriented toward management of the environment, can use the Log Reader Service to retrieve Log Entry
objects that were recorded recently or to receive Log Entry objects as they are logged by other bundles.

Source: The OSGi Alliance - OSGi Compendium

In JamaicaAMS, Log Service is used to expose event messages. There are two JamaicaAMS loggers,
with distinguished identifiers:

• jamaica-ams.log

• jamaica-ams.BundleLogger

They are used for the modules “framework” (i.e. the system bundle) and “bundle” (i.e., the bundles
except the system bundle), respectively.

Generally, log levels can be set to control the amount of logging performed, where a higher number
results in more logging. A log level of zero turns off the logging functionality completely.

The loggers are implemented using java.util.logging. It can be configured using the file specified in
java.util.logging.config.file.

8.2 Budgets
Note that...

One distinguishing feature of JamaicaAMS in comparison to other OSGi frameworks is that resource budgets may
be imposed on the separate bundles.

Page 52 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

The possibility to define budgets is a very important aspect, since all bundles are executed within the
same process and it becomes necessary to limit the resources used by each one of them. Otherwise,
a single misbehaving bundle could impact the performance of the system as a whole.

In order to impose budgets on a bundle, the bundle’s JAR file needs to contain an entry named
bundle.properties. This entry needs to be in Java property file format (see [4]).

Currently JamaicaAMS supports CPU, memory, and thread budgets. Budgeting the CPU time en-
sures that all bundles get a fair share of execution time. Budgeting the number of threads and the
memory usage ensures that no single bundle monopolizes these shared resources. In JamaicaAMS,
budgets are implemented through the following properties:

• budget.cpu It defines the CPU budget as a percentage of each period of 100 milliseconds.
Values for the budget.cpu property have the format number%, where number is an integer
between 0 and 100.

If a bundle exceeds its budget in a given period, the priority of all threads started by the bundle
is lowered to 0 for the remainder of the period. Priority 0 is a special priority that is lower than
all Java priorities. At the beginning of the next period, the original priorities are restored for
all threads of the bundle.

The effect of a priority being dropping to the lowest possible value is that the bundle’s threads
will only be scheduled to run if no other thread in the system is ready to be executed.

Example:
In the JamaicaAMS subdirectory <example>, the bundles “primes” and “primes-with-
budgets” display a sequence of prime numbers. For the variant “primes-with-budgets” how-
ever, it is specified a cpu budget that the bundle is allowed to use. This is declared under
<resources/bundle.properties>.

Example:

budget.cpu=5%

By running both bundles, the user can perceive the impact of imposing such restrictions.

• budget.memory JamaicaAMS allocates a fixed-sized Java heap at startup (typically between
64 MB and 256 MB). All memory allocations take place in this heap, that is shared by all
bundles.

Memory budgets ensure that no single bundle uses too much of the shared heap. Otherwise,
starting additional bundles might not be possible, or else already running bundles may cease to
operate properly due to an out-of-memory situation.

JamaicaAMS permits memory budgets to be defined in bytes. Values for the budget.memory
property have the format number, where number is a non-negative integer denoting the memory
budget in bytes.

If a bundle exceeds its memory budget, any subsequent allocation via “new” will result in an
OutOfMemoryError.

Example:

11 April 2022 Version 1.0.0 Page 53

JamaicaAMS User Documentation

budget.memory = 5242880

This budget permits a bundle to use up to five MB of Java heap.

• budget.threads It defines the thread budget as number of concurrently active threads. The
format of this property is bundle.maxNumberOfThreads = <n>.

A value larger than 0 will enforce the number of active threads to be limited by this value. Any
value smaller than 0 is invalid.

If a bundle reaches its thread budget, any subsequent creation of a new thread will result in an
exception. For example:

com.aicas.jamaica.lang.ThreadGroupMaxActiveCountExceededError:
ThreadGroup is limited to 10 threads, contains 10, so add is not
allowed

A bundle may create an arbitrary number of instances of class java.lang.Thread, and
there is no limit on the number of calls to start() on these threads. However, the number of
threads that may be alive simultaneously is limited by this property. To be sure that a thread is
no longer alive, a call to Thread.join() is required. Before a call to Thread.join(),
the thread may have finished its Java execution, but it may still not have been released back to
the framework’s thread pool.

8.3 Thread Count

This section accounts for the threads that are created by JamaicaAMS. This information is useful for
configuring the overall thread number and for configuring thread numbers for individual bundles.

In JamaicaAMS, the overall thread number can be configured through the environment variable JA-
MAICA_AMS_NUM_THREADS: this sets the maximum allowed threads in the runtime. Bundle
thread numbers can be configured through the property budget.threads. There are in total 39 threads
when JamaicaAMS runs with the default bundles.

Below is a list of JamaicaAMS threads. Note that starter threads are created when JamaicaAMS starts
and do not terminate until it shuts down. To complete the information, this section also includes a
list of the Jamaica Virtual Machine main threads.

Page 54 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

JamaicaAMS Starter Threads

• Main Thread
To invoke the construction and the initialization of JamaicaAMS and to start the initialized
framework.

JamaicaAMS Framework Threads

• FrameworkWiring
To perform asynchronous package refreshes.

• StartLevel
To query and modify the start level information for the framework.

• FrameworkDispatchQueue
To update all listeners (e.g., Framework, bundle, synchronous, and service listeners) as-
sociated with a specified bundle, and to dispatch the events of the bundle to the event
listeners.

• FrameworkExecutorThread
To perform special framework operations (e.g. bundle termination) asynchronously in an
isolated and safe manner.

Administrative JamaicaVM Threads

• Finalizer

• MemReservation0 (idle time GC)

• Reference Handler

• PosixEventThread (heap)

• SignalPumpThread

JamaicaVM Realtime Threads

• AbstractAsyncEventHandlerThread

8.3.1 Bundle Threads

Those contain all user threads that are created by the bundle. Note that user threads often have
a limited lifetime. The configurable thread numbers (JAMAICA_AMS_NUM_THREADS and
budget.threads) impose bounds on the number of threads that exist simultaneously.

In addition to the user threads, there is an administrative thread for each bundle, which only ex-
ists while the bundle is in active state. This thread is associated to the installed bundle. There is
a BundleThreadGroup per Bundle for managing its threads. There are in total 28 threads con-
structed for the default built-in bundles.

11 April 2022 Version 1.0.0 Page 55

JamaicaAMS User Documentation

JamaicaAMS Bundle Threads

• com.aicas.jamaica.ams.bundle.osgi-log-writer
Uses the java.util.logging to output the log entries recorded by the logging service. The
java.util.logging runs on a seperated thread.

• com.aicas.jamaica.ams.bundle.policy-file-reader
Loads the policy file for the OSGi security layer.

• com.aicas.jamaica.ams.bundle.configuration-admin
Specifies a service, which allows for easy management of configuration data for config-
urable components. Threads CM Event Dispatcher and CM Configuration Update are
part of this package.

• org.apache.felix.gogo.shell
Provides a simple textual user interface to interact with the command processor. Internally
it starts the shell on a separate thread, Gogo Shell. The Gogo Shell thread continues to
create threads job controller, pipe-gosh –login, and a thread pool, which incrementally
constructs 10 threads. Therefore, there are in total 13 threads constructed directly and
indirectly from the org.apache.felix.gogo.shell thread.

• org.apache.felix.gogo.runtime
Provides the core command processing functionality.

• org.apache.felix.gogo.command
Provides a set of basic commands.

• org.apache.felix.configurator
Provides an implementation of the OSGi Configurator Service Specification.

• org.osgi.util.function
Provides a set of basic utilities.

• org.apache.sling.commons.johnzon
Powered javax.json library.

• org.apache.felix.log
Provides a set of log utilities. Thread FelixLogListener is part of this package.

• org.apache.felix.converter
Provides a set of basic utilities.

• org.apache.felix.cm.json
Provides support for OSGi configurations specified in JSON documents.

Page 56 Version 1.0.0 11 April 2022

JamaicaAMS User Documentation

8.4 Usage of the Java Native Interface (JNI)

In general developers are discouraged from using the Java Native Interface (JNI). Nevertheless, the
usage of JNI allows them to use native code and easily interact with Java objects (e.g. get and set
field values, and invoke methods without many constraints).

On the one hand, with JNI it is possible to use the safety behavior of the Java language for the ability
to accomplish the tasks listed earlier; on the other hand, JNI provides powerful low-level access to
the machine resources (memory, I/O, and so on), but you need to be careful because you are working
without the safety net usually provided to Java developers.

JNI’s flexibility and power introduce the risk of programming practices that can lead to poor perfor-
mance, bugs, consume system heap and fail on a heap allocation.

For these reasons, developers must be careful about the code they include in their software and use
good practices to safeguard its integrity. Please note the additional information on best practices:

• A common JNI programming error is to call a JNI method and to proceed without checking for
exceptions once the call is complete. This can lead to buggy code and crashes. For this reason
it is important to return to the Java side in case of a pending exception. The pending exception
will then be raised as a regular Java exception.

• The memory allocated on the native side of JNI is not accounted for in the memory limits.

• Many JNI methods have a return value that indicates whether the call succeeded or not. A
common error, similar to not checking for exceptions, is to fail to check the return value and
for the code to proceed on the assumption that the call was successful.

• Native methods can create global references so that objects are not garbage collected until they
are no longer needed. Common errors are forgetting to delete global references that have been
created or losing track of them completely. Not freeing global references is an issue not only
because they keep the object itself alive but also because they keep all objects that can be
reached through the object alive. In some cases this can add up to a significant memory leak.

11 April 2022 Version 1.0.0 Page 57

JamaicaAMS User Documentation

Note: In its Core document for the Release 8, the OSGi Alliance advises developers about the use
of the Java Native Interface.

Considerations Using Native Libraries

There are some restrictions on loading native libraries due to the nature of class loaders. In order
to preserve namespace separation in class loaders, only one class loader can load a native library
as specified by an absolute path. Loading of a native library file by multiple class loaders (from
multiple bundles, for example) will result in a linkage error.

Care should be taken to use multiple libraries with the same file name but in a different directory in
the JAR. For example, foo/http.dll and bar/http.dll. The Framework must only use the first library
and ignore later defined libraries with the same name. In the example, only foo/http.dll will be
visible.

A native library is unloaded only when the class loader that loaded it has been garbage collected.
When a bundle is uninstalled or updated, any native libraries loaded by the bundle remain in
memory until the bundle’s class loader is garbage collected. The garbage collection will not happen
until all references to objects in the bundle have been garbage collected, and all bundles importing
packages from the updated or uninstalled bundle are refreshed. This implies that native libraries
loaded from the system class loader always remain in memory because the system class loader is
never garbage collected.

It is not uncommon that native code libraries have dependencies on other native code libraries.
This specification does not support these dependencies, it is assumed that native libraries delivered
in bundles should not rely on other native libraries.

Source: https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf.

Page 58 Version 1.0.0 11 April 2022

https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf

Chapter 9

Information for Specific Targets

Generally all JamaicaVM target systems should be also feasible to run JamaicaAMS, and this chapter
aims at documenting information referring to specific platforms.

9.1 Linux

JamaicaAMS can be run on variant Linux distributions for variant target, e.g., Intel X86 architecture
(32-bit/64-bit) and ARM architecture (v7 and v8). The following section describes several configu-
ration issues which might need to be taken care of to run the JamaicaAMS.

9.1.1 Shared Libraries

In order to run JamaicaAMS, the following shared libraries should exist in the library search paths.

• libm.so

• libpthread.so

• libnsl.so

• libdl.so

• librt.so

• libstdc++.so

Some Board Support Packages (BSPs) might not have libstdc++.so integrated. In this
case, the libstdc++.so has to be copied to the target file system where the library
loader can discover it. For example, if the libstdc++.so is copied in a folder <path
to JamaicaAMS>/setup/<target>/lib, the environment variable LD_LIBRARY_PATH
should be set with following command:

> export LD_LIBRARY_PATH=<path to JamaicaAMS>/setup/<target>/lib:$LD_LIBRARY_PATH

59

JamaicaAMS User Documentation

9.1.2 Random Number Generator

JamaicaAMS requires a random number generator been initialized on the target system. If the BSP
does not initialize the random number generator at boot time, it has to be done prior to starting
the JamaicaAMS. For example, on a Raspberry Pi, the application processor contains a Hardware
Random Number Generator. The BSP has been configured with the device (/dev/random and
/dev/hwrng) existing in the system. Therefore, no additional steps need to be done. For other
distribution or targets, please consult with the document of the specific distributions or the targets.

Page 60 Version 1.0.0 11 April 2022

Bibliography

[1] Apache Felix Gogo Shell. http://felix.apache.org/documentation/
subprojects/apache-felix-gogo.html.

[2] Introducing the Bndtools. https://bnd.bndtools.org.

[3] JamaicaVM 8.5 User Manual. https://www.aicas.com/download/manuals/
JamaicaVM-8.5-Manual.pdf.

[4] Java Properties File Format. http://www.aicas.com/jamaica/8.1/doc/
jamaica_api/java/util/Properties.html#load-java.io.Reader-.

[5] OSGi Core Release 8 Specification. https://docs.osgi.org/download/r8/osgi.
core-8.0.0.pdf.

[6] PMD Information. https://pmd.github.io/.

[7] SpotBugs Information. https://spotbugs.github.io/.

[8] The Eclipse Download page. https://www.eclipse.org/downloads/.

[9] The Eclipse project. https://www.eclipse.org/.

[10] The Plugin-in Development Environment (PDE) for Eclipse. https://www.eclipse.
org/pde/.

61

http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
https://bnd.bndtools.org
https://www.aicas.com/download/manuals/JamaicaVM-8.5-Manual.pdf
https://www.aicas.com/download/manuals/JamaicaVM-8.5-Manual.pdf
http://www.aicas.com/jamaica/8.1/doc/jamaica_api/java/util/Properties.html#load-java.io.Reader-
http://www.aicas.com/jamaica/8.1/doc/jamaica_api/java/util/Properties.html#load-java.io.Reader-
https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf
https://docs.osgi.org/download/r8/osgi.core-8.0.0.pdf
https://pmd.github.io/
https://spotbugs.github.io/
https://www.eclipse.org/downloads/
https://www.eclipse.org/
https://www.eclipse.org/pde/
https://www.eclipse.org/pde/

	JamaicaAMS Framework
	Getting Started
	System Requirements
	Host System
	Target System

	Installation
	Execution
	Launching
	Environment Variables
	Interaction
	Exit Codes
	Example Bundles
	How to install the Examples
	Importing the Examples into Eclipse
	How to build the Examples

	Tools and Components
	Development
	Emulator
	PMD and SpotBugs

	Deployment
	jarsigner

	Configuration
	Profiling and JamaicaAMS
	Bundle Configuration
	Configurator
	Configuration Admin Service

	Security
	Terms and Definitions
	Public/Private Key Pair
	Certificates and Chains

	Signed JAR File
	Authentication and Permissions
	Activating Security in JamaicaAMS
	An Example of Security Configuration
	Sign the Example Bundle
	Configure the System Properties
	Configure the Policy
	Set-Up and Operation

	OSGi Framework and Bundles
	Framework Layers
	Bundle Lifecycle
	Service Orientation
	Controlling the Bundles

	How to write a Bundle with Eclipse
	Prerequisites
	Bundle Tutorial
	Create a new Plug-In Project
	Make Yourself Familiar with the UI
	Implement the Functionality
	Run the Bundle on the Integrated Framework
	Deployment

	Debugging Bundles with Eclipse
	Prerequisites
	Background
	Setup of the Debugging Environment
	Run the Debug Server
	Run the Debug Client

	JamaicaAMS Runtime Reference
	JamaicaAMS Properties
	Config Properties
	System Properties
	Logger Properties

	Budgets
	Thread Count
	Bundle Threads

	Usage of the Java Native Interface (JNI)

	Information for Specific Targets
	Linux
	Shared Libraries
	Random Number Generator

